精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: + =1(a>b>0),离心率e= ,已知点P(0, )到椭圆C的右焦点F的距离是 .设经过点P且斜率存在的直线与椭圆C相交于A、B两点,线段AB的中垂线与x轴相交于一点Q. (Ⅰ)求椭圆C的标准方程;
(Ⅱ)求点Q的横坐标x0的取值范围.

【答案】解:(Ⅰ)由题意可得:e= = = ,又a2+b2=c2 . 联立解得:c2=12,a=4,b=2.
∴椭圆C的标准方程为: =1.
(Ⅱ)设直线AB的方程为:y=kx+ ,(k≠0),A(x1 , y1),B(x2 , y2),线段AB的中点M(x3 , y3),线段AB的中垂线方程为:y﹣y3=﹣ (x﹣x3).
联立 ,化为:(1+4k2)x2+12kx﹣7=0,
△>0,∴x1+x2=﹣
∴x3= =﹣
y3=kx3+ =
∴线段AB的中垂线方程为:y﹣ =﹣ (x+ ).
令y=0,可得x0= =
k>0时,0>x0
k<0时,0<x0
k=0时,x0=0也满足条件.
综上可得:点Q的横坐标x0的取值范围是
【解析】(Ⅰ)由题意可得:e= = = ,又a2+b2=c2 . 联立解出即可得出.(Ⅱ)设直线AB的方程为:y=kx+ ,(k≠0),A(x1 , y1),B(x2 , y2),线段AB的中点M(x3 , y3),直线AB的方程与题意方程联立化为:(1+4k2)x2+12kx﹣7=0,利用中点坐标公式与根与系数的关系可得可得中点M的坐标,可得线段AB的中垂线方程,令y=0,可得x0 , 通过对k分类讨论,利用基本不等式的性质即可得出.
【考点精析】利用椭圆的标准方程对题目进行判断即可得到答案,需要熟知椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC的对边分别为abc,且满足(2a-bcosC-ccosB=0

(Ⅰ)求角C的值;

(Ⅱ)若三边abc满足a+b=13c=7,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,椭圆的离心率是椭圆的右焦点,直线的斜率为为坐标原点.

)求椭圆的方程.

)设过点的动直线相交于两点,当的面积最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆一个焦点为,离心率

Ⅰ)求椭圆的方程式.

Ⅱ)定点为椭圆上的动点,求的最大值;并求出取最大值时点的坐标求.

Ⅲ)定直线为椭圆上的动点,证明点的距离与到定直线的距离的比值为常数,并求出此常数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=axex , 其中常数a≠0,e为自然对数的底数. (Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当a=1时,求函数f(x)的极值;
(Ⅲ)若直线y=e(x﹣ )是曲线y=f(x)的切线,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PA⊥底面ABC,∠BAC=90°.点DEN分别为棱PAPCBC的中点,M是线段AD的中点,PAAC=4,AB=2.

(1)求证:MN∥平面BDE

(2)求二面角CEMN的正弦值;

(3)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国内某知名大学有男生14000人,女生10000人,该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间,如下表:(平均每天运动的时间单位:小时,该校学生平均每天运动的时间范围是).

男生平均每天运动时间分布情况:

女生平均每天运动时间分布情况:

(1)请根据样本估算该校男生平均每天运动的时间(结果精确到0.1);

(2)若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生为“非运动达人”.

①请根据样本估算该校“运动达人”的数量;

②请根据上述表格中的统计数据填写下面列联表,并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“是否为‘运动达人’与性别有关?”

参考公式:,其中.

参考数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=mxα的图象经过点A(2,2).

(1)试比较2ln f(3)与3ln f(2)的大小;

(2)定义在R上的函数g(x)满足g(-x)=g(x), g(4+x)=g(4-x),且当x∈[0,4]时,

. 若关于x的不等式g 2(x)+ng(x)>0在[-200,200]上有且只有151个整数解,求实数n的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,ABBCBABCBD是边AC上的高,沿BDABC折起,当三棱锥ABCD的体积最大时,该三棱锥外接球表面积为(  )

A. 12πB. 24πC. 36πD. 48π

查看答案和解析>>

同步练习册答案