É輯ºÏWÓÉÂú×ãÏÂÁÐÁ½¸öÌõ¼þµÄÊýÁÐ{an}¹¹³É£º
¢ÙÊýѧ¹«Ê½£»¢Ú´æÔÚʵÊýM£¬Ê¹an¡ÜM£®£¨ nΪÕýÕûÊý£©
£¨¢ñ£©ÔÚÖ»ÓÐ5ÏîµÄÓÐÏÞÊýÁÐ{an}¡¢{bn}ÖУ¬ÆäÖÐa1=1£¬a2=2£¬a3=3£¬a4=4£¬a5=5£»b1=1£¬b2=4£¬b3=5£¬b4=4£¬b5=1£¬ÊÔÅжÏÊýÁÐ{an}¡¢{bn}ÊÇ·ñΪ¼¯ºÏWÖеÄÔªËØ£»
£¨¢ò£©Éè{cn}ÊǵȲîÊýÁУ¬SnÊÇÆäÇ°nÏîºÍ£¬c3=4£¬S3=18£¬Ö¤Ã÷ÊýÁÐ{Sn}¡ÊW£»²¢Ð´³öMµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©ÉèÊýÁÐ{dn}¡ÊW£¬ÇÒ¶ÔÂú×ãÌõ¼þµÄ³£ÊýM£¬´æÔÚÕýÕûÊýk£¬Ê¹dk=M£®
ÇóÖ¤£ºdk+1£¾dk+2£¾dk+3£®

½â£º£¨¢ñ£©¶ÔÓÚÊýÁÐ{an}£¬µ±n=1ʱ£¬=a2£¬
ÏÔÈ»²»Âú×㼯ºÏWµÄÌõ¼þ¢Ù£¬¹Ê{an}²»ÊǼ¯ºÏWÖеÄÔªËØ£®£¨2·Ö£©
¶ÔÓÚÊýÁÐ{bn}£¬µ±n={1£¬2£¬3£¬4£¬5}ʱ£¬
²»½öÓУ¬£¬£¬
¶øÇÒÓÐbn¡Ü5£¬ÏÔÈ»Âú×㼯ºÏWµÄÌõ¼þ¢Ù¢Ú£¬¹Ê{bn}ÊǼ¯ºÏWÖеÄÔªËØ£®£¨4·Ö£©
£¨¢ò£©¡ß{cn}ÊǵȲîÊýÁУ¬SnÊÇÆäÇ°nÏîºÍ£¬c3=4£¬S3=18£¬ÉèÆ乫²îΪd£¬
¡àc3-2d+c3-d+c3=18£¬
¡àd=-2
¡àcn=c3+£¨n-3£©d=-2n+10£¬Sn=-n2+9n£¨7·Ö£©
¡ß£¬¡à£»
¡ß£¬¡àSnµÄ×î´óÖµÊÇS4=S5=20£¬¼´Sn¡ÜS4=20£®
¡à{Sn}¡ÊW£¬ÇÒMµÄÈ¡Öµ·¶Î§ÊÇ[20£¬+¡Þ£©£¨9·Ö£©
£¨¢ó£©Ö¤Ã÷£º¡ß{dn}¡ÊW£¬¡à£¬
ÕûÀídk+2£¼dk+1+£¨dk+1-dk£©=dk+1+£¨dk+1-M£©£¬
¡ßdk=M£¬¡àdk+1¡ÜM£¬¡àdk+2£¼dk+1£»
Ó֡ߣ¬¡àdk+3£¼dk+2+£¨dk+2-dk+1£©£¼dk+2£¬
¡àdk+1£¾dk+2£¾dk+3£®£¨14·Ö£©
·ÖÎö£º£¨¢ñ£©ÒªÅжÏÊýÁв»Îª¼¯ºÏÖеÄÔªËØ£¬Ö»ÐèÒªÔÚÊýÁÐÖÐÕÒÒ»¸öÔªËز»ÊǼ¯ºÏÖеÄÔªËؼ´¿É£®ÒªÅжÏÊýÁÐΪ¼¯ºÏÖеÄÔªËØ£¬ÐèÒªÑϸñÖ¤Ã÷£¬¶ÔÓÚÊýÁÐ{bn}£¬µ±n?{1£¬2£¬3£¬4£¬5}ʱ£¬¿´ÊýÁÐ{bn}ÊÇ·ñÂú×㼯ºÏWµÄÌõ¼þ¢Ù¢Ú¼´¿É£®
£¨¢ò£©ÊÇÖ¤Ã÷Ì⣮Ҫ֤Ã÷ÊýÁÐ{Sn}¡ÊW£¬Ê×ÏÈÀûÓÃÌâÖеÄÌõ¼þ£º{cn}ÊǵȲîÊýÁУ¬SnÊÇÆäÇ°nÏîºÍ£¬c3=4£¬S3=18È·¶¨³öÊýÁÐ{Sn}£¬È»ºóÔÙÖ¤Ã÷Âú×ã¢Ù¢Ú¼´¿É£®
£¨¢ó£©Ò²ÊÇÖ¤Ã÷Ì⣮ҪÇóÖ¤dk+1£¾dk+2£¾dk+3£¬ÊýÁÐ{dn}¡ÊWËùÒÔÂú×ãWµÄÁ½¸öÌõ¼þ£¬µÃµ½£®ÕûÀíµÃdk+2£¼dk+1+£¨dk+1-dk£©=dk+1+£¨dk+1-M£©£¬ÒòΪdk=M£¬µÃµ½dk+1¡ÜM£¬¼´dk+2£¼dk+1£»ÓÖÒòΪ£¬µÃµ½dk+3£¼dk+2+£¨dk+2-dk+1£©£¼dk+2£¬ÕûÀí¿ÉµÃÖ¤£®
µãÆÀ£º´ËÌ⿼²éÔËÓÃÌâÖж¨ÒåµÄº¯Êý½â¾öÎÊÌâµÄÄÜÁ¦£¬ÒÔ¼°ÊýÁÐÓ뼯ºÏ¹ØϵµÄÅжϣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÉ輯ºÏWÓÉÂú×ãÏÂÁÐÁ½¸öÌõ¼þµÄÊýÁÐ{an}¹¹³É£º
¢Ù
an+an+22
£¼an+1
£»¢Ú´æÔÚʵÊýM£¬Ê¹an¡ÜM£®£¨ nΪÕýÕûÊý£©
£¨¢ñ£©ÔÚÖ»ÓÐ5ÏîµÄÓÐÏÞÊýÁÐ{an}¡¢{bn}ÖУ¬ÆäÖÐa1=1£¬a2=2£¬a3=3£¬a4=4£¬a5=5£»b1=1£¬b2=4£¬b3=5£¬b4=4£¬b5=1£¬ÊÔÅжÏÊýÁÐ{an}¡¢{bn}ÊÇ·ñΪ¼¯ºÏWÖеÄÔªËØ£»
£¨¢ò£©Éè{cn}ÊǵȲîÊýÁУ¬SnÊÇÆäÇ°nÏîºÍ£¬c3=4£¬S3=18£¬Ö¤Ã÷ÊýÁÐ{Sn}¡ÊW£»²¢Ð´³öMµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©ÉèÊýÁÐ{dn}¡ÊW£¬ÇÒ¶ÔÂú×ãÌõ¼þµÄ³£ÊýM£¬´æÔÚÕýÕûÊýk£¬Ê¹dk=M£®
ÇóÖ¤£ºdk+1£¾dk+2£¾dk+3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É輯ºÏWÓÉÂú×ãÏÂÁÐÁ½¸öÌõ¼þµÄÊýÁÐ{an}¹¹³É£º¢Ù
an+an+2
2
£¼an+1
£»¢Ú´æÔÚʵÊýM£¬Ê¹an¡ÜM£®£¨nΪÕýÕûÊý£©
£¨¢ñ£©ÔÚÖ»ÓÐ5ÏîµÄÓÐÏÞÊýÁÐ{an}¡¢{bn}ÖУ¬ÆäÖÐa1=1£¬a2=2£¬a3=3£¬a4=4£¬a5=5£»b1=1£¬b2=4£¬b3=5£¬b4=4£¬b5=1£»ÊÔÅжÏÊýÁÐ{an}¡¢{bn}ÊÇ·ñΪ¼¯ºÏWÖеÄÔªËØ£»
£¨¢ò£©Éè{cn}ÊǸ÷ÏîΪÕýÊýµÄµÈ±ÈÊýÁУ¬SnÊÇÆäÇ°nÏîºÍ£¬c3=
1
4
£¬S3=
7
4
£¬ÊÔÖ¤Ã÷{Sn}¡ÊW£¬²¢Ð´³öMµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©ÉèÊýÁÐ{dn}¡ÊW£¬¶ÔÓÚÂú×ãÌõ¼þµÄMµÄ×îСֵM0£¬¶¼ÓÐdn¡ÙM0£¨n¡ÊN*£©£®ÇóÖ¤£ºÊýÁÐ{dn}µ¥µ÷µÝÔö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•·¿É½Çøһģ£©É輯ºÏWÓÉÂú×ãÏÂÁÐÁ½¸öÌõ¼þµÄÊýÁÐ{an}¹¹³É£º
¢Ù
an+an+2
2
£¼an+1
£»¢Ú´æÔÚʵÊýM£¬Ê¹an¡ÜM£®£¨nΪÕýÕûÊý£©£®ÔÚÒÔÏÂÊýÁÐ
£¨1£©{n2+1}£»  £¨2£©{
2n+9
2n+11
}
£»  £¨3£©{2+
4
n
}
£»  £¨4£©{1-
1
2n
}

ÖÐÊôÓÚ¼¯ºÏWµÄÊýÁбàºÅΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º±±¾©Êзą́Çø2010½ì¸ßÈýһģ¿¼ÊÔ£¨ÊýѧÀí£© ÌâÐÍ£º½â´ðÌâ

£¨14·Ö£©É輯ºÏWÓÉÂú×ãÏÂÁÐÁ½¸öÌõ¼þµÄÊýÁй¹³É£º
¢Ù
¢Ú´æÔÚʵÊýM£¬Ê¹£¨nΪÕýÕûÊý£©
£¨I£©ÔÚÖ»ÓÐ5ÏîµÄÓÐÏÞÊýÁÐ
£»ÊÔÅжÏÊýÁÐÊÇ·ñΪ¼¯ºÏWµÄÔªËØ£»
£¨II£©ÉèÊǸ÷ÏîΪÕýµÄµÈ±ÈÊýÁУ¬ÊÇÆäÇ°nÏîºÍ£¬Ö¤Ã÷ÊýÁУ»²¢Ð´³öMµÄÈ¡Öµ·¶Î§£»
£¨III£©ÉèÊýÁÐÇÒ¶ÔÂú×ãÌõ¼þµÄMµÄ×îСֵM0£¬¶¼ÓÐ.
ÇóÖ¤£ºÊýÁе¥µ÷µÝÔö.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010Äê±±¾©Êзą́Çø¸ßÈýÏÂѧÆÚһģÊýѧ£¨ÎÄ£©²âÊÔ ÌâÐÍ£º½â´ðÌâ

£¨14·Ö£©
É輯ºÏWÓÉÂú×ãÏÂÁÐÁ½¸öÌõ¼þµÄÊýÁй¹³É£º
¢Ù
¢Ú´æÔÚʵÊýM£¬Ê¹£¨nΪÕýÕûÊý£©
£¨I£©ÔÚÖ»ÓÐ5ÏîµÄÓÐÏÞÊýÁÐ
£»ÊÔÅжÏÊýÁÐÊÇ·ñΪ¼¯ºÏWµÄÔªËØ£»
£¨II£©ÉèÊǵȲîÊýÁУ¬ÊÇÆäÇ°nÏîºÍ£¬Ö¤Ã÷ÊýÁУ»²¢Ð´³öMµÄÈ¡Öµ·¶Î§£»
£¨III£©ÉèÊýÁÐÇÒ¶ÔÂú×ãÌõ¼þµÄ³£ÊýM£¬´æÔÚÕýÕûÊýk£¬Ê¹
ÇóÖ¤£º

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸