(本小题满分12分)
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口的O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶. 假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行时间应为多少小时?
(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;
(I)希望相遇时小艇的航行距离最小,则小艇的航行时间为1/3小时.
(Ⅱ)小艇航行速度的最小值为海里/小时。
【解析】
试题分析:(1)先假设相遇时小艇的航行距离为S,根据余弦定理可得到关系式S=
整理后运用二次函数的性质可确定答案.
(2)先假设小艇与轮船在某处相遇,根据余弦定理可得到(vt)2=202+(30t)2-2•20•30t•cos(90°-30°),再由t的范围可求得v的最小值.
(I)设相遇时小艇的航行距离为S海里,则
, 故t=1/3时,S min =,
答:希望相遇时小艇的航行距离最小,则小艇的航行时间为1/3小时.
(Ⅱ)设小艇与轮船在B处相遇
由题意可知,(vt)2 =202 +(30 t)2-2·20·30t·cos(90°-30°),
化简得:
由于0<t≤1/2,即1/t ≥2
所以当=2时,取得最小值,
即小艇航行速度的最小值为海里/小时。
考点:本试题主要考查了解三角形、二次函数等基础知识,考查推理论证能力,抽象概括能力、运算求解能力、应用意识,考查函数与方程思想、数形结合思想、化归思想
点评:解决该试题的关键是能结合余弦定理和函数与不等式的思想求解最值。
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com