【题目】下列四个命题
①若三个平面两两相交,则它们的交线只能平行或重合;
②若a、b是异面直线,则过不在a、b上的任一点一定可以作一条直线和a、b都相交;
③正三棱锥的底面边长为a,侧棱长为b,若过SA、SB的中点作平行于侧棱SC的截面,则截面面积为;
④过球面上任意给定两点的平面与球面相截时其截面面积最大,则这样的平面只有一个.
其中( ).
A. 只有①,②成立.
B. 只有③成立.
C. 只有④ 成立.
D. ①、②、③、④都不成立.
科目:高中数学 来源: 题型:
【题目】如图,在直角△中,,△通过△以直线为轴顺时针旋转120°得到(),点为线段上一点,且.
(1)求证:,并证明:平面;
(2)分别以、、为、、轴建立空间直角坐标系,求异面直线与所成角的大小(用反余弦运算表示);
(3)若,求锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4―4:坐标系与参数方程]
在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.
(1)若a=1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为,求a.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)已知该厂技改前,100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
,参考数值:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数学中有许多形状优美、寓意美好的曲线,曲线C:就是其中之一(如图).给出下列三个结论:
①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);
②曲线C上任意一点到原点的距离都不超过;
③曲线C所围成的“心形”区域的面积小于3.
其中,所有正确结论的序号是
A. ①B. ②C. ①②D. ①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用0与1两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下面几种说法:
①相等向量的坐标相同;
②若向量满足,则
③若,,,是不共线的四点,则“”是“四边形为平行四边形”的充要条件;
④的充要条件是且.
其中正确说法的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com