精英家教网 > 高中数学 > 题目详情

如图,在五面体ABCDEF中,四边形ABCD为矩形,对角线AC,BD的交点为O,△ABF和△DEC为等边三角形,棱EF∥BC,EF=数学公式BC,AB=1,BC=2,M为EF的中点,
①求证:OM⊥平面ABCD;
②求二面角E-CD-A的大小;
③求点A到平面CDE的距离.

(1)证明:取AB,CD的中点为P,Q.连接PQ,EQ,FP.则P,O,Q三点共线
且PQ∥BC又因为EF∥BC所以有EF∥PQ且FP=EQ.所以EFPQ为等腰梯形.
所以有MO⊥PQ,CD⊥EQ CD⊥PQ,PQ∩CQ=Q
所以CD⊥平面EFPQ
所以CD⊥MO,又CD和PQ相交,
所以有MO⊥面ABCD
(2)由(1)可知∠EQP为二面角E-CD-A的平面角
过E点作EN⊥PQ于点N,则N为OQ的中点.
cos∠EQP=
(3)因为AB∥平面CDE所以P点到平面CDE的距离等于A点到平面CDE的距离.过
点P作PH⊥EQ于点H,则PH^CD,又CD交EQ于Q.所以PH⊥平面CDE.
所以PH的长为点P到平面CDE的距离.
由cos?EQP=,PH=PQsin∠EQP=
分析:(1)取AB,CD的中点为P,Q.连接PQ,EQ,FP.说明EFPQ为等腰梯形.证明CD⊥平面EFPQ推出CD⊥MO,又CD和PQ相交,即可证明MO⊥面ABCD
(2)由(1)可知∠EQP为二面角E-CD-A的平面角,通过cos∠EQP=即可.
(3)因为AB∥平面CDE所以P点到平面CDE的距离等于A点到平面CDE的距离.过点P作PH⊥EQ于点H,说明PH的长为点P到平面CDE的距离.由cos?EQP=,求出PH=PQsin∠EQP=
点评:本题是中档题,考查直线与平面的垂直,空间线面关系、二面角的度量等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.
(Ⅰ)求证:BF∥平面ACGD;
(Ⅱ)求五面体ABCDEFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在五面体ABCDE中,平面BCD⊥平面ABC,DC=DB=
3
,AC=BC=2ED=2,AC⊥BC,且ED∥AC    
(1)求证:平面ABE⊥平面ABC
(2)在线段BC上有一点F,且BF=
1
2
,求二面角F-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在五面体ABC-DEF中,四边形BCFE 是矩形,DE⊥平面BCFE.
求证:(1)BC⊥平面ABED;
(2)CF∥AD.

查看答案和解析>>

科目:高中数学 来源:2012年辽宁省鞍山一中高考数学五模试卷(理科)(解析版) 题型:解答题

如图,在五面体ABCDE中,平面BCD⊥平面ABC,DC=DB=,AC=BC=2ED=2,AC⊥BC,且ED∥AC    
(1)求证:平面ABE⊥平面ABC
(2)在线段BC上有一点F,且,求二面角F-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:2012年高考数学预测试卷2(文科)(解析版) 题型:解答题

如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.
(Ⅰ)求证:BF∥平面ACGD;
(Ⅱ)求五面体ABCDEFG的体积.

查看答案和解析>>

同步练习册答案