精英家教网 > 高中数学 > 题目详情

【题目】已知点,圆.

1)若直线l且被圆C截得的弦长为,求直线l的方程;

2)点,点Q是圆C上的任意一点,求面积的最小值.

【答案】1.2

【解析】

1)根据题意,讨论直线斜率是否存在,分别求弦长,确定参数取值.

2)根据两点坐标写出直线方程,求的最小面积转化为求线段长度和点到直线最短距离,即可求解.

1)圆,其圆心坐标为,半径为,点,当直线斜率不存在时,直线方程为.

时,,解得

可得弦长为成立;

当直线斜率存在时,设过A的直线方程为:,化为一般方程:

圆心到直线的距离

,解得:

所以

综上可得直线l.

2)直线MN的方程为,即.

,其圆心坐标为,半径为

可得圆心到直线MN的距离为

圆上的点到直线距离的最小值为.

,可得的面积最小值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,是两个小区所在地,到一条公路的垂直距离分别为两端之间的距离为.

1)某移动公司将在之间找一点,在处建造一个信号塔,使得的张角与的张角相等,试确定点的位置.

2)环保部门将在之间找一点,在处建造一个垃圾处理厂,使得所张角最大,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱垂直于底面,分别为的中点.

(1)证明:

(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上顶点为点,右焦点为.延长交椭圆于点,且满足.

(1)试求椭圆的标准方程;

(2)过点作与轴不重合的直线和椭圆交于两点,设椭圆的左顶点为点,且直线分别与直线交于两点,记直线的斜率分别为,则之积是否为定值?若是,求出该定值;若不是,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点 且圆心在直线.

(1)求圆的方程;

(2)过点的直线与圆交于两点,问在直线上是否存在定点使得恒成立?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列各组命题,其中的充分必要条件的是(

有两个不同的零点

是偶函数;

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCPE中,平面PAC⊥平面ABCACBCPEBC,2PEBCM是线段AE的中点,N是线段PA上一点,且满足ANAP(0<<1).

(Ⅰ)若,求证:MNPC

(Ⅱ)是否存在,使得三棱锥MACN与三棱锥BACP的体积比为1:12?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市政府招商引资,为吸引外商,决定第一个月产品免税,某外资厂该第一个月A型产品出厂价为每件10元,月销售量为6万件;第二个月,当地政府开始对该商品征收税率为 ,即销售1元要征收元)的税收,于是该产品的出厂价就上升到每件元,预计月销售量将减少p万件.

1)将第二个月政府对该商品征收的税收y(万元)表示成p的函数,并指出这个函数的定义域;

2)要使第二个月该厂的税收不少于1万元,则p的范围是多少?

3)在第(2)问的前提下,要让厂家本月获得最大销售金额,则p应为多少?

查看答案和解析>>

同步练习册答案