精英家教网 > 高中数学 > 题目详情

【题目】如图,直三棱柱ABC-A1B1C1中, AB=AC=AA1,AB⊥AC,M是CC1的中点,N是BC的中点,点P在线段A1B1上运动.

(Ⅰ)求证:PN⊥AM;

(Ⅱ)试确定点P的位置,使直线PN和平面ABC所成的角

最大.

【答案】(1)见解析(2)D为AB的中点,P为A1B1的中点

【解析】试题分析:

(Ⅰ)由题意结合摄影定理即可证得PN⊥AM;

()由几何关系,角的正切值越大,则角度值越大,据此可得最大时,D为AB的中点,P为A1B1的中点。

试题解析:

方法一:几何法

(Ⅰ) 取AC的中点Q,连结A1Q,易知AM⊥A1Q,

又PN在平面A1C内的射影为A1Q,所以AM⊥PN.

(Ⅱ) 作PD⊥AB于D,连结DN,则为直

线PN和平面ABC所成的角。易知当ND最短即ND⊥AB

时, 最大,从而最大,此时D为AB的中点,P为A1B1的中点。

方法二:向量法,略。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(a<0).

(Ⅰ)当a=-3时,求f(x)的单调递减区间;

(Ⅱ)若函数f(x)有且仅有一个零点,求实数a的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地上年度电价为08元,年用电量为1亿千瓦时本年度计划将电价调至055元~075元之间,经测算,若电价调至元,则本年度新增用电量(亿千瓦时)与元成反比例又当

(1)之间的函数关系式;

(2)若每千瓦时电的成本价为03元,则电价调至多少时,本年度电力部门的收益将比上年增加20%[收益用电量(实际电价-成本价)]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若,求的单调区间;

(2)若函数处有极值,请证明:对任意时,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 过椭圆 ()的短轴端点, 分别是圆与椭圆上任意两点且线段长度的最大值为3.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点作圆的一条切线交椭圆 两点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】口袋中装有2个白球和nn≥2,nN*)个红球.每次从袋中摸出2个球(每次摸球后把这2个球放回口袋中),若摸出的2个球颜色相同则为中奖,否则为不中奖.

(I)用含n的代数式表示1次摸球中奖的概率;

(Ⅱ)若n=3,求3次摸球中恰有1次中奖的概率;

(III)记3次摸球中恰有1次中奖的概率为fp),当fp)取得最大值时,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,存在使不等式成立,求实数的取值范围;

(Ⅱ)若在区间上,函数的图象恒在直线的下方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家用电器公司生产一新款热水器,首先每年需要固定投入 200万元,其次每生产1百台,需再投入0.9万元.假设该公司生产的该款热水器当年能全部售出,但每销售1百台需另付运输费0.1万元.根据以往的经验,年销售总额(万元)关于年产量(百台)的函数为.

(1)将年利润表示为年产量的函数;

(2)求该公司生产的该款热水器的最大年利润及相应的年产量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区发生里氏8.0级特大地震.地震专家对发生的余震进行了监测,记录的部分数据如下表:

强度(J)

1.6×1019

3.2×1019

4.5×1019

6.4×1019

震级(里氏)

5.0

5.2

5.3

5.4

注:地震强度是指地震时释放的能量.

地震强度(x)和震级(y)的模拟函数关系可以选用y=alg x+b(其中a,b为常数).利用散点图(如图)可知a的值等于________.(取lg 2=0.3进行计算)

查看答案和解析>>

同步练习册答案