精英家教网 > 高中数学 > 题目详情

【题目】直四棱柱ABCD﹣A1B1C1D1中,底面ABCD为菱形,且∠BAD=60°,A1A=AB,E为BB1延长线上的一点,D1E⊥面D1AC.设AB=2.

(1)求二面角E﹣AC﹣D1的大小;
(2)在D1E上是否存在一点P,使A1P∥面EAC?若存在,求D1P:PE的值;不存在,说明理由.

【答案】
(1)解:设AC与BD交于O,

如图以O为原点,OA,OB,为x轴,y轴,过O作面ABCD的垂线为z轴,建立空间直角坐标系,

则A( ,0,0),B(0,1,0),C(﹣ ,0,0),D(0,﹣1,0),D1(0,﹣1,2),

设E(0,1,2+h),

=(0,2,h), =(2 ,0,0), =( ),

∵D1E⊥平面D1AC,∴D1E⊥AC,D1E⊥D1A,

∴2﹣2h=0,∴h=1,即E(0,1,3),

=(0,2,1), =(﹣ ,1,3),

设平面EAC的法向量为 =(x,y,z),

则由 ,令z=﹣1,得 =(0,3,﹣1),

∵D1E⊥面D1AC,∴平面D1AC的法向量为 =(0,2,1),

∴cos< >= = =

∴二面角E﹣AC﹣D1的大小为45°.


(2)解:设 = =λ( ),

= =(0, ),

= + =(﹣ ,﹣1,0)+(0, )=(﹣ ),

∵A1P∥面EAC,∴

∴﹣ =0,

解得

∴存在点P使A1P∥面EAC,此时D1P:PE=2:3.


【解析】(1)设AC与BD交于O,以O为原点,OA,OB,为x轴,y轴,过O作面ABCD的垂线为z轴,建立空间直角坐标系,利用向量法能求出二面角E﹣AC﹣D1的大小.(2)设 = =λ( ),得 =(0, ), =(﹣ ),由此能求出存在点P使A1P∥面EAC,此时D1P:PE=2:3.
【考点精析】关于本题考查的直线与平面平行的判定,需要了解平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在长方体ABCD﹣A1B1C1D1中,AA1=AD=1,E为CD的中点.

(1)求证:B1E⊥AD1
(2)若二面角A﹣B1E﹣A1的大小为30°,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥S﹣ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=SB,点M是SD的中点,AN⊥SC,且交SC于点N.

(1)求证:SC⊥平面AMN;
(2)求二面角D﹣AC﹣M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】与圆(x+1)2+y2=1和圆(x﹣5)2+y2=9都相切的圆的圆心轨迹是(
A.椭圆和双曲线
B.两条双曲线
C.双曲线的两支
D.双曲线的一支

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示几何体的三视图,则该几何体的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x),(x∈R)上任一点(x0 , y0)的切线方程为y﹣y0=(x0﹣2)(x02﹣1)(x﹣x0),那么函数f(x)的单调递减区间是(
A.[﹣1,+∞)
B.(﹣∞,2]
C.(﹣∞,﹣1)和(1,2)
D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们把形如 的函数称为幂指函数,幂指函数在求导时,可以利用对法数:在函数解析式两边求对数得 ,两边对x求导数,得 ,于是 ,运用此方法可以求得函数 在(1,1)处的切线方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形ABCD中,AB=2,AD=1,M为CD的中点.如图将△ADM沿AM折起,使得平面ADM⊥平面ABCM.

(Ⅰ)求证:BM⊥平面ADM;
(Ⅱ)若点E是线段DB上的中点,求三棱锥E﹣ABM的体积V1与四棱锥D﹣ABCM的体积V2之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图正方体ABCD﹣A1B1C1D1 , M,N分别为A1D1和AA1的中点,则下列说法中正确的个数为(
①C1M∥AC;
②BD1⊥AC;
③BC1与AC的所成角为60°;
④B1A1、C1M、BN三条直线交于一点.
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案