【题目】设是在点处的切线.
()求的解析式.
()求证: .
()设,其中.若对恒成立,求的取值范围.
【答案】(1);(2)见解析;(3)
【解析】试题分析:(1)第(1)问,利用导数的几何意义求切线方程即得y=f(x). (2)第(2)问,转化成证明,即证明[f(x)-g(x)]的最大值小于等于零.(3),第(3)问,对a分类讨论,求函数的单调区间和最小值,找到a的范围.
试题解析:
()由得,∴, ,
∴在点处的切线方程为: ,即,
∴的解析式为: .
()令,则,
由得,由,得,
∴在上单调递增,在上单调递减,
∴,即,∴.
()的定义域是,且.
①时,由()得: ,
∴,
∴在上单调递增,∴恒成立,符合题意;
②时,由,且的导数,
∴在区间上单调递增,
∵, ,
∴存在,使得,
∴在区间上单调递减,在区间上单调递增,∴,
此时, 不可能恒成立,不符合题意,
综上所述, 的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知圆O:x2+y2=2,直线.l:y=kx-2.
(1)若直线l与圆O相切,求k的值;
(2)若直线l与圆O交于不同的两点A,B,当∠AOB为锐角时,求k的取值范围;
(3)若,P是直线l上的动点,过P作圆O的两条切线PC,PD,切点为C,D,探究:直线CD是否过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班同学利用国庆节进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 低碳族的人数 | 占本组的频率 |
第一组 | 120 | 0.6 | |
第二组 | 195 | ||
第三组 | 100 | 0.5 | |
第四组 | 0.4 | ||
第五组 | 30 | 0.3 | |
第六组 | 15 | 0.3 |
(1)补全频率分布直方图并求、、的值;
(2)从岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,如何抽取?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的部分图象如图所示,且相邻的两个最值点的距离为.
(1)求函数的解析式;
(2)若将函数的图象向左平移1个单位长度后得到函数的图象,关于的不等式在上有解,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点,平行于的直线在轴上的截距为,直线交椭圆于两个不同点.
(1)求椭圆的方程;
(2)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合P={x|a+1≤x≤2a+1},Q={x|x2-3x≤10}.
(1)若a=3,求(RP)∩Q;
(2)若P∪Q=Q,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂要建造一个长方形无盖蓄水池,其容积为立方米,深为.如果池底每平方米的造价为元,池壁每平方米的造价为元,那么怎样设计水池能使总造价最低(设蓄水池池底的相邻两边边长分别为,)?最低总造价是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(Ⅰ)证明 PA//平面EDB;
(Ⅱ)证明PB⊥平面EFD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com