精英家教网 > 高中数学 > 题目详情
设C1,C2,…,Cn,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线y=
3
3
x
相切,对每一个正整数n,圆Cn都与圆Cn+1相互外切,以rn表示Cn的半径,以(λn,0)表示Cn的圆心,已知{rn}为递增数列.
(1)证明{rn}为等比数列(提示:
rn
λn
=sinθ
,其中θ为直线y=
3
3
x
的倾斜角);
(2)设r1=1,求数列{
n
rn
}
的前n项和Sn
(3)在(2)的条件下,若对任意的正整数n恒有不等式Sn
9
4
-
an
rn
成立,求实数a的取值范围.
分析:(1)依题意可知tanθ=
3
3
,由同角三角函数的基本关系可得sinθ,从而得
rn
λn
,得rn与λn的关系式①,再根据圆Cn都与圆Cn+1相互外切,得λn+1n=rn+rn+1②,由①②可得rn+1与rn的关系式,根据等比数列的定义可作出判断;
(2)由(1)易求rn,从而可得
n
rn
,利用错位相减法可求得Sn
(3)由(2)可表示出不等式Sn
9
4
-
an
rn
,分离出参数a后,转化为求函数的最值即可,利用函数的单调性易求函数的最值;
解答:解:(1)证明:依题意可知tanθ=
3
3
,则sinθ=
1
2

所以
rn
λn
=
1
2
,得λn=2rn,∴λn+1=2rn+1
又圆Cn都与圆Cn+1相互外切,
所以λn+1n=rn+rn+1,即2rn+1-2rn=rn+rn+1,从而可得rn+1=3rn
故数列{rn}为等比数列,公比为3.
(2)由于r1=1,q=3,故rn=3n-1,从而
n
rn
=
n
3n-1

Sn=
1
r1
+
2
r2
+…+
n-1
rn-1
+
n
rn
=1+2•3-1+3•3-2+…+(n-1)•32-n+n•31-n①,
1
3
Sn=1•3-1+2•3-2+…+(n-1)•31-n+n•3-n
②,
由①-②,得
2
3
Sn=1+3-1+3-2+…+•31-n-n•3-n
=
1-3-n
1-
1
3
-n•3-n
=
3
2
-(n+
3
2
)•3-n

Sn=
9
4
-
(2n+3)•31-n
4

(3)由(2)可知Sn
9
4
-
an
rn
可化为
9
4
-
(2n+3)•31-n
4
9
4
-
an
3n-1
,即a>
2n+3
4n
=
1
2
+
3
4n

要使对任意的正整数n恒有不等式a>
2n+3
4n
=
1
2
+
3
4n
成立,只需a>[
1
2
+
3
4n
]max

f(x)=
1
2
+
3
4x
,则函数f(x)在(0,+∞)为单调递减函数.
又n∈N*,∴当n=1时,[
1
2
+
3
4n
]max
=
5
4

a>
5
4
点评:本题考查数列与不等式的综合、数列与解析几何的综合,考查等比数列的定义及通项公式,考查转化思想,对恒成立问题往往转化为函数最值解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,右顶点为A,P是椭圆C1上任意一点,设该双曲线C2:以椭圆C1的焦点为顶点,顶点为焦点,B是双曲线C2在第一象限内的任意一点,且c=
a2-b2

(1)设
PF1
PF2
的最大值为2c2,求椭圆离心率;
(2)若椭圆离心率e=
1
2
时,是否存在λ,总有∠BAF1=λ∠BF1A成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A.选修4-1:几何证明选讲
锐角三角形ABC内接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
AB
于点E,连接EC,求∠OEC.
B.选修4-2:矩阵与变换
曲线C1=x2+2y2=1在矩阵M=[
12
01
]的作用下变换为曲线C2,求C2的方程.
C.选修4-4:坐标系与参数方程
P为曲线C1
x=1+cosθ
y=sinθ
(θ为参数)上一点,求它到直线C2
x=1+2t
y=2
(t为参数)距离的最小值.
D.选修4-5:不等式选讲
设n∈N*,求证:
C
1
n
+
C
2
N
+L+
C
N
N
n(2n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆C0
x2
a2
+
y2
b2
=1(a>b>0
,a,b为常数),动圆C1x2+y2=
t
2
1
,b<t1<a.点A1,A2分别为C0的左,右顶点,C1与C0相交于A,B,C,D四点.
(Ⅰ)求直线AA1与直线A2B交点M的轨迹方程;
(Ⅱ)设动圆C2x2+y2=
t
2
2
与C0相交A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:
t
2
1
+
t
2
2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
(2)选修4一4:坐标系与参数方程
已知直线C1
x=1+tcosα
y=tsinα
(t为参数),C2
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)当α=
π
3
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:设P、Q分别为曲线C1和C2上的点,把P、Q两点距离的最小值称为曲线C1到C2的距离.
(1)求曲线C:y=x2到直线l:2x-y-4=0的距离;
(2)若曲线C:(x-a)2+y2=1到直线l:y=x-1的距离为3,求实数a的值;
(3)求圆O:x2+y2=1到曲线y=
2x-3x-2
(x>2)
的距离.

查看答案和解析>>

同步练习册答案