精英家教网 > 高中数学 > 题目详情

【题目】某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表

商店名称

A

B

C

D

E

销售额x(千万元)

3

5

6

7

9

利润额y(百万元)

2

3

3

4

5

1)画出散点图.观察散点图,说明两个变量有怎样的相关性.

(2)用最小二乘法计算利润额y对销售额x的回归直线方程.

(3)当销售额为4(千万元)时,估计利润额的大小.

其中

【答案】(1)见解析(2)(3)2.4(百万元)

【解析】

1)根据所给的这一组数据,得到5个点的坐标,把这几个点的坐标在直角坐标系中描出对于的点,即可得到散点图,可判断为正相关;

2)根据这组数据,利用最小二乘法求得的值,即可求解回归直线的方程;

3)利用作出的回归直线方程,把的值代入方程,估计出对应的的值.

1)根据所给的这一组数据,得到5个点的坐标:,把这几个点的坐标在直角坐标系中描出对应的点,得到如下的散点图:

2)设回归直线的方程是:

由表格中的数据,可得

又由

,即

y对销售额x的回归直线方程为

3)当销售额为4(千万元)时,利润额为:2.4(百万元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数是定义域为R的奇函数.

k值;

,试判断函数单调性并求使不等式恒成立的t的取值范围;

,且上的最小值为,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)解不等式

(2)若函数在区间上存在零点,求实数的取值范围;

3)若函数其中为奇函数, 为偶函数,若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形中,分别是的中点将分别沿折起,使重合于点.则下列结论正确的是( )

A.

B. 平面

C. 二面角的余弦值为

D. 在平面上的投影是的外心

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《数书九章》中有“天池盆测雨”题,大概意思如下:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为2尺8寸,盆底直径为l尺2寸,盆深1尺8寸.若盆中积水深9寸,则平均降雨量是(注:①平均降雨量等于盆中积水体积除以盆口面积;②1尺等于10寸)( )

A. 3寸B. 4寸C. 5寸D. 6寸

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求函数的单调区间及最值.

)若对恒成立,求的取值范围.

)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.

(1)求的值;

(2)求函数的对称轴方程;

(3)当时,方程有两个不同的实根,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初始溶液含杂质2%,每过滤一次可使杂质含量减少.

1)写出杂质含量y与过滤次数n的函数关系式;

2)过滤7次后的杂质含量是多少?过滤8次后的杂质含量是多少?至少应过滤几次才能使产品达到市场要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛。从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段,到如图所示的频率分布直方图.

1)求图中的值及样本的中位数与众数;

2)若从竞赛成绩在两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于分为事件,求事件发生的概率.

3)为了激励同学们的学习热情,现评出一二三等奖,得分在内的为一等奖,得分在内的为二等奖, 得分在内的为三等奖.若将频率视为概率,现从考生中随机抽取三名,设为获得三等奖的人数,求的分布列与数学期望.

查看答案和解析>>

同步练习册答案