精英家教网 > 高中数学 > 题目详情

【题目】下列命题一定正确的是(
A.在等差数列{an}中,若ap+aq=ar+aδ , 则p+q=r+δ
B.已知数列{an}的前n项和为Sn , 若{an}是等比数列,则Sk , S2k﹣Sk , S3k﹣S2k也是等比数列
C.在数列{an}中,若ap+aq=2ar , 则ap , ar , aq成等差数列
D.在数列{an}中,若ap?aq=a ,则ap , ar , aq成等比数列

【答案】C
【解析】解:A.在等差数列{an}中,若ap+aq=ar+aδ , 公差d=0,则p+q=r+δ不一定正确;
B.在数列{an}的前n项和为Sn , 若{an}是等比数列,必须Sk , S2k﹣Sk , S3k﹣S2k是不等于0时,成Sk , S2k﹣Sk , S3k﹣S2k也是等比数列,因此不正确;
C.在数列{an}中,若ap+aq=2ar , 则ap , ar , aq成等差数列,正确;
D.在数列{an}中,若apaq=a ,则ap , ar , aq不一定成等比数列,没有条件an≠0.
故选:C.
【考点精析】关于本题考查的等差关系的确定和等比关系的确定,需要了解如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即=d ,(n≥2,n∈N)那么这个数列就叫做等差数列;等比数列可以通过定义法、中项法、通项公式法、前n项和法进行判断才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(1-x2)ex.

(1)讨论f(x)的单调性;

(2)当x0时,f(x)ax+1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分15分)如图,已知四棱锥PABCDPAD是以AD为斜边的等腰直角三角形,BCADCDADPC=AD=2DC=2CBEPD的中点.

)证明:CE平面PAB

)求直线CE与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据题意解答
(1)已知函数f(x)= +9x,若x>0,求f(x)的最小值及此时的x值.
(2)解不等式(x+2)(3﹣x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点M(1,2),N(3,2),点F是直线l:y=x﹣3上的一动点,当∠MFN最大时,过点M,N,F的圆的方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂要建造一个长方体无盖贮水池,其容积为6400m3 , 深为4m,如果池底每1m2的造价为300元,池壁每1m2的造价为240元,问怎样设计水池能使总造价最低,最低总造价是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线 为参数, ),在以坐标原点为极点, 轴的非负半轴为极轴的极坐标系中,曲线 .

(1)试将曲线化为直角坐标系中的普通方程,并指出两曲线有公共点时的取值范围;

(2)当时,两曲线相交于 两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,底面为菱形, 相交于点,四边形为直角梯形, ,平面底面.

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|< )在一个周期内的图像如图所示,其中M( ,2),N( ,0).
(1)求函数f(x)的解析式;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且a= ,c=3,f( )= ,求△ABC的面积.

查看答案和解析>>

同步练习册答案