精英家教网 > 高中数学 > 题目详情
17.写出集合{(1,2),(3,4)}的真子集:∅,{(1,2)},{(3,4)}.

分析 将集合A的真子集按含有元素从少到多一一列出即可,勿忘∅是任何集合的子集.

解答 解:集合A的真子集有∅,{(1,2)},{(3,4)},
故答案为:∅,{(1,2)},{(3,4)}.

点评 本题考查集合的子集概念,列举法是解决此类问题的方法,属基本题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若集合{x|mx2+mx+1<0,x∈R}=∅,则实数m的取值范围是[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,若双曲线右支上存在一点($\frac{{a}^{2}}{c}$,-$\frac{ab}{c}$)与点F1关于直线y=-$\frac{bx}{a}$对称,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线y2=8x的焦点为F,过F作直线l交抛物线与A、B两点,设|FA|=m,|FB|=n,则m.n的取值范围(  )
A.(0,4]B.(0,14]C.[4,+∞)D.[16,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=(2a-1)x在R上是减函数,则a的取值范围是(  )
A.0<a<$\frac{1}{2}$B.0<a<1C.$\frac{1}{2}$<a<1D.a>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.欧阳修《煤炭翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.
可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为1.5cm圆,中间有边长为0.5cm的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为(  )
A.$\frac{4}{9π}$B.$\frac{9}{4π}$C.$\frac{4π}{9}$D.$\frac{9π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设全集U={不大于20的质数},且A∩(∁B)={3,5},(∁A)∩B={7,19},(∁A)∩(∁B)={2,11},求集合A、B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=x|2a-x|+2x,a∈R.
(1)若a=0,判断函数y=f(x)的奇偶性,并加以证明;
(2)若函数f(x)在R上是增函数,求实数a的取值范围;
(3)若存在实数a∈[-2,2],使得关于x的方程f(x)-tf(2a)=0有三个不相等的实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\overrightarrow{a}$与$\overrightarrow{b}$是夹角为60°的单位向量,2$\overrightarrow{a}$-$\overrightarrow{b}$与k$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为120°,则实数k=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案