【题目】已知数列 的前 项和为 ,且满足
(1)求数列 的通项公式 ;
(2)设 ,令 ,求
【答案】
(1)
由 ,得 ,
∴n=1时, ,得 ,
n≥2时, = - =(1- )-(1- )= - ,
得 ,
∴ 是等比数列,且公比为 ,首项 ,∴ =2× .
(2)
由(1)及 得1- = = ,
∴ = ,
∴ = = ,
∴ =( )+( )+…+( )= = .
【解析】(1)对 Sn + an = 1 ( n ∈ N ) 进行变形,得到 , 从而判断数列 { an } 是等比数列,然后根据等比数列的性质求出 {an} 的通项公式;(2)首先计算出{bn}的通项, bn = , 则有 ,通过裂项的方法可以求出 Tn的值。
【考点精析】本题主要考查了等比数列的定义和数列的前n项和的相关知识点,需要掌握如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列;数列{an}的前n项和sn与通项an的关系才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知圆M:x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.
(1)求曲线E的方程;
(2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1 , k2 , 满足k1k2=4,求△ABC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤,问本持金几何”其意思为“今有人持金出五关,第1关收税金 ,第2关收税金为剩余金的 ,第3关收税金为剩余金的 ,第4关收税金为剩余金的 ,第5关收税金为剩余金的 ,5关所收税金之和,恰好重1斤,问原来持金多少?”若将题中“5关所收税金之和,恰好重1斤,问原来持金多少?”改成假设这个原来持金为x,按此规律通过第8关,则第8关需收税金为x.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[不等式选讲]
设函数f(x)=a(x﹣1).
(Ⅰ)当a=1时,解不等式|f(x)|+|f(﹣x)|≥3x;
(Ⅱ)设|a|≤1,当|x|≤1时,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx+x2﹣x,其中a∈R.
(Ⅰ)若a>0,讨论f(x)的单调性;
(Ⅱ)当x≥1时,f(x)≥0恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年1月某校高三年级1600名学生参加了教育局组织的期末统考,已知数学考试成绩X~N(100,σ2)(试卷满分为150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的 ,则此次统考中成绩不低于120分的学生人数约为( )
A.80
B.100
C.120
D.200
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的短轴长为2 ,离心率e= ,
(1)求椭圆C的标准方程:
(2)若F1、F2分别是椭圆C的左、右焦点,过F2的直线l与椭圆C交于不同的两点A、B,求△F1AB的内切圆半径的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年下半年,锦阳市教体局举行了市教育系统直属单位职工篮球比赛,以增强直属单位间的交流与合作,组织方统计了来自A1 , A2 , A3 , A4 , A5等5个直属单位的男子篮球队的平均身高与本次比赛的平均得分,如表所示:
单位 | A1 | A2 | A3 | A4 | A5 |
平均身高x(单位:cm) | 170 | 174 | 176 | 181 | 179 |
平均得分y | 62 | 64 | 66 | 70 | 68 |
注:回归当初 中斜率和截距最小二乘估计公式分别为 , .
(1)根据表中数据,求y关于x的线性回归方程;(系数精确到0.01)
(2)若M队平均身高为185cm,根据(I)中所求得的回归方程,预测M队的平均得分(精确到0.01)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com