精英家教网 > 高中数学 > 题目详情

【题目】已知数列 的前 项和为 ,且满足
(1)求数列 的通项公式
(2)设 ,令 ,求

【答案】
(1)

,得

∴n=1时, ,得

n≥2时, = - =(1- )-(1- )= -

是等比数列,且公比为 ,首项 ,∴ =2× .


(2)

由(1)及 得1- = =

=

= =

=( )+( )+…+( )= = .


【解析】(1)对 Sn + an = 1 ( n ∈ N ) 进行变形,得到 , 从而判断数列 { an } 是等比数列,然后根据等比数列的性质求出 {an} 的通项公式;(2)首先计算出{bn}的通项, bn = , 则有 ,通过裂项的方法可以求出 Tn的值。
【考点精析】本题主要考查了等比数列的定义和数列的前n项和的相关知识点,需要掌握如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列;数列{an}的前n项和sn与通项an的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆M:x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.
(1)求曲线E的方程;
(2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1 , k2 , 满足k1k2=4,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤,问本持金几何”其意思为“今有人持金出五关,第1关收税金 ,第2关收税金为剩余金的 ,第3关收税金为剩余金的 ,第4关收税金为剩余金的 ,第5关收税金为剩余金的 ,5关所收税金之和,恰好重1斤,问原来持金多少?”若将题中“5关所收税金之和,恰好重1斤,问原来持金多少?”改成假设这个原来持金为x,按此规律通过第8关,则第8关需收税金为x.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[不等式选讲]

设函数f(x)=a(x﹣1).
(Ⅰ)当a=1时,解不等式|f(x)|+|f(﹣x)|≥3x;
(Ⅱ)设|a|≤1,当|x|≤1时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+x2﹣x,其中a∈R.
(Ⅰ)若a>0,讨论f(x)的单调性;
(Ⅱ)当x≥1时,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年1月某校高三年级1600名学生参加了教育局组织的期末统考,已知数学考试成绩X~N(100,σ2)(试卷满分为150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的 ,则此次统考中成绩不低于120分的学生人数约为(
A.80
B.100
C.120
D.200

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的短轴长为2 ,离心率e=
(1)求椭圆C的标准方程:
(2)若F1、F2分别是椭圆C的左、右焦点,过F2的直线l与椭圆C交于不同的两点A、B,求△F1AB的内切圆半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年下半年,锦阳市教体局举行了市教育系统直属单位职工篮球比赛,以增强直属单位间的交流与合作,组织方统计了来自A1 , A2 , A3 , A4 , A5等5个直属单位的男子篮球队的平均身高与本次比赛的平均得分,如表所示:

单位

A1

A2

A3

A4

A5

平均身高x(单位:cm)

170

174

176

181

179

平均得分y

62

64

66

70

68

注:回归当初 中斜率和截距最小二乘估计公式分别为
(1)根据表中数据,求y关于x的线性回归方程;(系数精确到0.01)
(2)若M队平均身高为185cm,根据(I)中所求得的回归方程,预测M队的平均得分(精确到0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C的对边依次为a,b,c,外接圆半径为1,且满足 ,则△ABC面积的最大值为

查看答案和解析>>

同步练习册答案