【题目】已知数列{an}的首项a1=3,通项an与前n项和Sn之间满足2an=SnSn﹣1(n≥2).
(1)求证 是等差数列,并求公差;
(2)求数列{an}的通项公式.
【答案】
(1)证明:∵2an=SnSn﹣1(n≥2)∴2(Sn﹣Sn﹣1)=SnSn﹣1
两边同时除以SnSn﹣1,得2
∴
∴ 是等差数列,公差
(2)解:∵
∴ =
∴
当n≥2时,
∴
【解析】(1)由题设知2(Sn﹣Sn﹣1)=SnSn﹣1 , 两边同时除以SnSn﹣1 , 得2 ,由此知 是等差数列,公差 .(2)由题设知 ,故 .由此能导出数列{an}的通项公式.
【考点精析】利用等差关系的确定和数列的通项公式对题目进行判断即可得到答案,需要熟知如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即-=d ,(n≥2,n∈N)那么这个数列就叫做等差数列;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:+=1(a>b>0)的离心率为,且过点(1,).
(I)求椭圆C的方程;
(Ⅱ)设与圆O:x2+y2=相切的直线l交椭圆C与A,B两点,求△OAB面积的最大值,及取得最大值时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设O为坐标原点,点P的坐标(x﹣2,x﹣y)
(1)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(2)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数g(x)=asinxcosx(a>0)的最大值为 ,则函数f(x)=sinx+acosx的图象的一条对称轴方程为( )
A.x=0
B.x=﹣
C.x=﹣
D.x=﹣
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个班级中进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出的茎叶图如下图,记成绩不低于70分者为“成绩优良”.
(1)分别计算甲、乙两班20个样本中,化学分数前十的平均分,并大致判断哪种教学方式的教学效果更佳;
(2)由以上统计数据填写下面列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?
附:参考公式: ,其中.
临界值表:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了得到函数y=3sin(2x+ )的图象,只要把函数y=3sinx的图象上所有的点( )
A.横坐标缩短到原来的 倍(纵坐标不变),再把所得图象所有的点向左平移 个单位长度
B.横坐标伸长到原来的2倍(纵坐标不变),再把所得图象所有的点向左平移 个单位长度
C.向右平移 个单位长度,再把所得图象所有的点横坐标缩短到原来的 倍(纵坐标不变)
D.向左平移 个单位长度,再把所得图象所有的点横坐标伸长到原来的2倍(纵坐标不变)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆(是大于的常数)的左、右顶点分别为、,点是椭圆上位于轴上方的动点,直线、与直线分别交于、两点(设直线的斜率为正数).
(Ⅰ)设直线、的斜率分别为, ,求证为定值.
(Ⅱ)求线段的长度的最小值.
(Ⅲ)判断“”是“存在点,使得是等边三角形”的什么条件?(直接写出结果)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在内,发布成绩使用等级制各等级划分标准见下表,规定: 、、三级为合格等级, 为不合格等级.
百分制 | 分及以上 | 分到分 | 分到分 | 分以下 |
等级 |
为了解该校高一年级学生身体素质情况,从中抽取了名学生的原始成绩作为样本进行统计,按照的分组作出频率分布直方图如图所示,样本中分数在分及以上的所有数据的茎叶图如图所示.
(1)求和频率分布直方图中的的值;
(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生任选人,求至少有人成绩是合格等级的概率;
(3)在选取的样本中,从、两个等级的学生中随机抽取了名学生进行调研,记表示所抽取的名学生中为等级的学生人数,求随机变量的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com