精英家教网 > 高中数学 > 题目详情
为了得到y=sin2x的图象,只需将y=sin(2x+
π
3
)的图象(  )
A、向右平移
π
3
个长度单位
B、向右平移
π
6
个长度单位
C、向左平移
π
6
个长度单位
D、向左平移
π
3
个长度单位
考点:函数y=Asin(ωx+φ)的图象变换
专题:计算题
分析:由于2(x-
π
6
)+
π
3
=2x,按照“左加右减”的平移原则,即可达到答案.
解答: 解:∵2(x-
π
6
)+
π
3
=2x,
∴将y=sin(2x+
π
3
)的图象向右平移
π
6
个长度单位可得到y=sin2x的图象.
故选B.
点评:本题考查函数y=Asin(ωx+φ)的图象变换,关键是考查三角函数的“左加右减,上加下减”的平移原则,易错点在于需要提出2后看自变量x的平移单位,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

由不等式组
x≥0
y≥-1
x+y≤1
确定的平面区域记为Ω1,曲线y=x2-l(x≥0)与坐标轴所围成的平面区域记为Ω2.在Ω1中随机取一点,则该点恰好在Ω2内的概率为(  )
A、
1
3
B、
2
3
C、
1
4
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,an+1=2n+an,则数列{an}的前n项和Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数a,b满足a+2b=2,则3a+9b的最小值是(  )
A、6
B、12
C、2
3
D、4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

算法的5大特征分别是:
(1)一个算法有0个或多个输入;(2)
 
;(3)可行性;(4)有限性;(5)
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线C1:ρ=2cosθ与曲线C2:y-mx-m=0有2个不同的交点,则实数m的取值范围是(  )
A、(-
3
3
3
3
B、(-
3
3
,0)∪(0,
3
3
C、[-
3
3
3
3
]
D、(-∞,-
3
3
)∪(
3
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
ax+1
x+2
(a为常数).
(1)若a=1,证明:f(x)在(-2,+∞)上为单调递增函数;
(2)若a<0,且当x∈(-1,2)时,f(x)的值域为(-
3
4
,3),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果一个函数f(x)在其定义区间内对任意实数x,y都满足f(
x+y
2
)≤
f(x)+f(y)
2
,则称这个函数是下凸函数,下列函数:①f(x)=2x;②f(x)=x3;③f(x)=log2x(x>0); ④f(x)=
x,x<0
2x,x≥0
中,是下凸函数的有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an},a1=1,a3=
1
9
,则a5=(  )
A、±
1
81
B、-
1
81
C、
1
81
D、±
1
2

查看答案和解析>>

同步练习册答案