精英家教网 > 高中数学 > 题目详情

【题目】交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T,其范围为[0,10],分为五个级别,T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3),从某市交通指挥中心随机选取了三环以内的50个交通路段,依据其交通指数数据绘制的频率分布直方图如右图. (Ⅰ)这50个路段为中度拥堵的有多少个?
(Ⅱ)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?
(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.

【答案】解:(Ⅰ)(0.2+0.16)×1×50=18,这50路段为中度拥堵的有18个. (Ⅱ)设事件A“一个路段严重拥堵”,则P(A)=0.1,
事件B 至少一个路段严重拥堵”,则P =(1﹣P(A))3=0.729.
P(B)=1﹣P( )=0.271,所以三个路段至少有一个是严重拥堵的概率是0.271.
(III)由频率分布直方图可得:分布列如下表:

X

30

36

42

60

P

0.1

0.44

0.36

0.1

E(X)=30×0.1+36×0.44+42×0.36+60×0.1=39.96.
此人经过该路段所用时间的数学期望是39.96分钟.
【解析】(Ⅰ)利用(0.2+0.16)×1×50即可得出这50路段为中度拥堵的个数.(Ⅱ)设事件A“一个路段严重拥堵”,则P(A)=0.1,事件B 至少一个路段严重拥堵”,则P =(1﹣P(A))3 . P(B)=1﹣P( )=0.271,可得三个路段至少有一个是严重拥堵的概率.(III)利用频率分布直方图即可得出分布列,进而得出数学期望.
【考点精析】根据题目的已知条件,利用频率分布直方图的相关知识可以得到问题的答案,需要掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四边形ABCD中,| |=4, =12,E为AC的中点.

(1)若cos∠ABC= ,求△ABC的面积SABC
(2)若 =2 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在等腰梯形ABCD中,AD∥BC,AD=CD=AB,∠ABC=60°,将三角形ABD沿BD折起,使点A在平面BCD上的投影G落在BD上.
(1)求证:平面ACD⊥平面ABD;
(2)求二面角G﹣AC﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx,g(x)= x2﹣bx(b为常数).
(1)函数f(x)的图象在点(1,f(1))处的切线与函数g(x)的图象相切,求实数b的值;
(2)若函数h(x)=f(x)+g(x)在定义域上存在单调减区间,求实数b的取值范围;
(3)若b≥2,x1 , x2∈[1,2],且x1≠x2 , 都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A. 命题x24x30,则x3”的逆否命题是:x≠3,则x24x3≠0”

B. “x>1”“|x|>0”的充分不必要条件

C. pq为假命题,则pq均为假命题

D. 命题p“x0∈R使得x01<0”,则p“x∈R,均有x2x1≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C: + =1(a>b>0)的左、右焦点分别为F1 , F2 , 点A({2, )在椭圆上,且满足 =0. (Ⅰ)求椭圆C的标准方程;
(Ⅱ)动直线l:y=kx+m与椭圆C交于P,Q两点,且OP⊥OQ,是否存在圆x2+y2=r2使得l恰好是该圆的切线,若存在,求出r;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论错误的是 ( )

A. 若“”与“”均为假命题,则假.

B. 命题“存在”的否定是“对任意

C. ”是“”的充分不必要条件.

D. “若则a<b”的逆命题为真.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个顶点为,焦点在轴上,离心率为

(1)求椭圆的方程;

(2)若椭圆与直线相交于不同的两点,当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率为,且过点.

(1)求椭圆的方程;

(2)设为椭圆上任一点, 为其右焦点,点满足.

①证明: 为定值;

②设直线与椭圆有两个不同的交点,与轴交于点.若成等差数列,求的值.

查看答案和解析>>

同步练习册答案