精英家教网 > 高中数学 > 题目详情
5.在直观图如图中,四边形O′A′B′C′为菱形且边长为2cm,则在xOy坐标系中原四边形OABC为矩形(填形状),面积为8cm2

分析 利用斜二测画法的过程把给出的直观图还原回原图形,还原回原图形后,一边O′A′还原为OA,长度不变为2cm,另一边OC,长度是4cm,即可得出结论.

解答 解:O′A′B′C′为菱形且边长为2cm,则在xOy坐标系中原四边形OABC是矩形,
还原回原图形后,一边O′A′还原为OA,长度不变为2cm,另一边OC,长度是4cm,
所以原图形的面积为S=2×4=8cm2
故答案为:矩形;8cm2

点评 本题考查了平面图形直观图的画法,解答的关键是熟记斜二测画法的要点和步骤,从而还原得到原图形,求出面积,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.有一球内接圆锥,底面圆周和顶点均在球面上,其底面积为3π,已知球的半径R=2,则此圆锥的体积为π或3π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知P是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上的一点,F1,F2为椭圆的焦点.
(1)若∠F1PF2=90°,求△PF1F2的面积;
(2)求|PF1|•|PF2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2013}}{2013}$,g(x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2013}}{2013}$,设F(x)=f(x+3)•g(x-3),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b-a的最小值为(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.满足“对定义域内的任意实数m,n,都有f(m•n)=f(m)+f(n)”的函数是(  )
A.f(x)=x3B.f(x)=kx(k≠0)C.f(x)=a-xD.f(x)=loga|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知sinα,sinβ是方程8x2-6kx+2k+1=0的两根,且α.β终边互相垂直,则k=-$\frac{10}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若3x+1=a,3y-1=b,则3x+y=ab.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数y=9x-2•3x+3的单调区间,并求出其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=($\frac{1}{2}$)|x-1|+a|x+2|.当a=1时,f(x)的单调递减区间为[1,+∞);当a=-1时,f(x)的单调递增区间为[-2,1],f(x)的值域为[$\frac{1}{8}$,8].

查看答案和解析>>

同步练习册答案