精英家教网 > 高中数学 > 题目详情
离心率为
1
2
,长轴长为4,焦点在x轴上的椭圆的标准方程为
x2
4
+
y2
3
=1
x2
4
+
y2
3
=1
分析:设椭圆的标准方程为
x2
a2
+
y2
b2
=1
(a>b>0).由题意可得
e=
c
a
=
1
2
2a=4
a2=b2+c2
,解出即可.
解答:解:由题意可设椭圆的标准方程为
x2
a2
+
y2
b2
=1
(a>b>0).
由题意可得
e=
c
a
=
1
2
2a=4
a2=b2+c2
,解得
a=2
b2=3

∴椭圆的标准方程为
x2
4
+
y2
3
=1.
故答案为
x2
4
+
y2
3
=1.
点评:熟练掌握椭圆的标准方程及其性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中
①设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=a(a>0),则动点P的轨迹是椭圆或线段;
②命题“每个指数函数都是单调函数”是全称命题,而且是真命题.
③离心率为
1
2
,长轴长为8的椭圆标准方程为
x2
16
+
y2
12
=1

④若3<k<4,则二次曲线
x2
4-k
+
y2
3-k
=1
的焦点坐标是(±1,0).
其中正确的为
②④
②④
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中
①设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=a(a>0),则动点P的轨迹是椭圆或线段;
②命题“每个指数函数都是单调函数”是全称命题,而且是真命题.
③离心率为
1
2
,长轴长为8的椭圆标准方程为
x2
16
+
y2
12
=1

④若3<k<4,则二次曲线
x2
4-k
+
y2
3-k
=1
的焦点坐标是(±1,0).
其中正确的为
②④
②④
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,长轴长为4,M为右顶点,过右焦点F的直线与椭圆交于A、B两点,直线AM、BM与x=4分别交于P、Q两点,(P、Q两点不重合).
(1)求椭圆的标准方程;
(2)当直线AB与x轴垂直时,求证:
FP
FQ
=0

(3)当直线AB的斜率为2时,(2)的结论是否还成立,若成立,请证明;若不成立,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下各个关于圆锥曲线的命题中
①设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=a(a>0),则动点P的轨迹是椭圆或线段;
②过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有3条;
③离心率为
1
2
,长轴长为8的椭圆标准方程为
x2
16
+
y2
12
=1

④若3<k<4,则二次曲线
x2
4-k
+
y2
3-k
=1
的焦点坐标是(±1,0).
其中真命题的序号为
②④
②④
(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案