精英家教网 > 高中数学 > 题目详情

【题目】如图,已知点P在圆柱OO1的底面⊙O上,分别为⊙O、⊙O1的直径,且平面

(1)求证:

(2)若圆柱的体积

①求三棱锥A1﹣APB的体积.

②在线段AP上是否存在一点M,使异面直线OM与所成角的余弦值为?若存在,请指出M的位置,并证明;若不存在,请说明理由.

【答案】(1)见解析;(2)①,②见解析

【解析】

1)根据得出平面,故而;(2)①根据圆柱的体积计算,根据计算,代入体积公式计算棱锥的体积;②先证明就是异面直线所成的角,然后根据可得,故的中点.

(1)证明:∵P在⊙O上,AB是⊙O的直径,

平面

平面,又平面,故

(2)①由题意,解得

,得

∴三棱锥的体积

②在AP上存在一点M,当M为AP的中点时,使异面直线OM与所成角的余弦值为

证明:∵O、M分别为的中点,则

就是异面直线OM与所成的角,

中,

∴在AP上存在一点M,当M为AP的中点时,使异面直线OM与所成角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2ωx﹣ )(ω>0)的最小正周期为4π,则(
A.函数f(x)的图象关于点( ,0)对称
B.函数f(x)的图象关于直线x= 对称
C.函数f(x)的图象在( ,π)上单调递减
D.函数f(x)的图象在( ,π)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sinx的图象向右平移 个单位,再将所得函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=sin(ωx+φ),(ω>0,|φ|< )的图象,则(
A.ω=2,φ=﹣
B.ω=2,φ=﹣
C.ω= ,φ=﹣
D.ω= ,φ=﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】0,1,2,3,4五个数字组成五位数.

(1)求没有重复数字的五位数的个数;

(2)求没有重复数字的五位偶数的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中,平面平面,且的中点.

求证:

为线段上一点,且求证:平面

在棱上是否存在一点,使得直线与平面所成的角为.若存在,指出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , Sn=n2+2n,bn=anan+1cos(n+1)π,数列{bn} 的前n项和为Tn , 若Tn≥tn2对n∈N*恒成立,则实数t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知底面,异面直线所成角等于.

(1)求直线和平面所成角的正弦值;

(2)在棱上是否存在一点,使得平面与平面所成锐二面角的正切值为?若存在,指出点在棱上的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调递增区间;

(Ⅱ)若对任意的实数,都有成立,求实数的取值范围;

(Ⅲ)若的最大值是,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过点且与直线平行,直线过点且与直线垂直.

Ⅰ)求直线的方程.

若圆同时相切,求圆的方程.

查看答案和解析>>

同步练习册答案