精英家教网 > 高中数学 > 题目详情
(2009•烟台二模)设x,a∈N+,且关于不等式|x-1|<a的解集有且仅有5个元素.则a的值是
5
5
分析:由|x-1|<a(a∈N+)⇒1-a<x<1+a,再结合不等式|x-1|<a的解集有且仅有5个元素且x∈N+,即可求得答案.
解答:解:∵|x-1|<a(a∈N+),
∴1-a<x<1+a,
又不等式|x-1|<a的解集有且仅有5个元素且x∈N+
∴该不等式的解集A={1,2,3,4,5}.
∴a>4,又a∈N+
∴a=5.
故答案为:5.
点评:本题考查绝对值不等式,考查细心审题,认真分析与运算的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•烟台二模)已知f(x)=
(3-a)x-4a,x<1
logax,x≥1
是(-∞,+∞)上的增函数,那么a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)函数f(x)=sin(ωx+?)(ω>0,|?|<
π
2
)的最小正周期为π,且其图象向右平移
π
12
个单位后得到的函数为奇函数,则函数f(x)的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)已知函数f(x)是R上的偶函数,且f(1-x)=f(1+x),当x∈[0,1]时,f(x)=x2,则函数y=f(x)-log7x 的零点个数(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)已知函数f(x)=gx-x (g为自然对数的底数).
(1)求f(x)的最小值;
(2)设不等式f(x)>ax的解集为P,若M={x|
1
2
≤x≤2
},且M∩P≠∅,求实数a的取值范围;
(3)已知n∈N+,且S n=
n
0
f(x)dx
,是否存在等差数列{an}和首项为f(1)公比大于0的等比数列{bn},使得Sn=
n
k=1
(ak+bk)
?若存在,请求出数列{an},{bn}的通项公式.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)某中学高三(2)班甲、乙两名同学自高中以来每次考试成绩的茎叶图如下,下列说法正确的是(  )

查看答案和解析>>

同步练习册答案