【题目】二次函数在区间上有最大值4,最小值0.
(1)求函数的解析式;
(2)设,若在时恒成立,求的范围.
【答案】(1)g(x)=x2﹣2x+1;(2)[33,+∞)
【解析】
(1)根据二次函数的性质讨论对称轴,即可求解最值,可得解析式.
(2)求解f(x)的解析式,f(x)﹣kx≤0在x∈[,8],分离参数即可求解.
(1)g(x)=mx2﹣2mx+n+1(m>0)
其对称轴x=1,x∈[0,3]上,
∴当x=1时,f(x)取得最小值为﹣m+n+1=0,…①.
当x=3时,f(x)取得最大值为3m+n+1=4,…②.
由①②解得:m=1,n=0
故得函数g(x)的解析式为:g(x)=x2﹣2x+1
(2)由f(x)
当x∈[,8]时,f(x)﹣kx≤0恒成立,
即x2﹣4x+1﹣kx2≤0恒成立,
∴x2﹣4x+1≤kx2
∴k.
设,则t∈[,8]
可得:1﹣4t+t2=(t﹣2)2﹣3≤k.
当t=8时,(1﹣4t+t2)max=33
故得k的取值范围是[33,+∞)
科目:高中数学 来源: 题型:
【题目】已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是 (为参数).
(1)将曲线的极坐标方程化为直角坐标方程;
(2)若直线与曲线相交于两点,且,求直线的倾斜角的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线的左、右焦点分别为、,直线过且与双曲线交于、两点.
(1)若的倾斜角为,,是等腰直角三角形,求双曲线的标准方程;
(2),,若的斜率存在,且,求的斜率;
(3)证明:点到已知双曲线的两条渐近线的距离的乘积为定值是该点在已知双曲线上的必要非充分条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数角度看,可以看成是以为自变量的函数,其定义域是.
(1)证明:
(2)试利用1的结论来证明:当为偶数时,的展开式最中间一项的二项式系数最大;当为奇数时的展开式最中间两项的二项式系数相等且最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,其左、右焦点分别为,点是坐标平面内一点,且, (为坐标原点).
(1)求椭圆的方程;
(2)过点且斜率为的动直线交椭圆于两点,在轴上是否存在定点,使以为直径的圆恒过该点?若存在,求出点的坐标,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com