精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.

(1) 求抛物线的方程;

(2) 当点为直线上的定点时,求直线的方程;

(3) 当点在直线上移动时,求的最小值.

【答案】() () ()

【解析】试题分析:(1)设拋物线的方程为,利用点到直线的距离,求出,得到抛物线方程;(2)对抛物线方程求导,求出切线的斜率,用点斜式写出切线方程,化成一般式,找出共同点,得到直线的方程;(3)由拋物线定义可知,联立直线与抛物线方程,消去,得到一个关于的一元二次方程,由韦达定理求得的值,还有,表示成的二次函数的形式,再求出最值.

试题解析: 解:(1)依题意,设拋物线的方程为,由结合

解得,所以拋物线的方程为.

2)拋物线的方程为,即,求导得

(其中)则切线的斜率分别为

所以切线的方程为,即,即

同理可得切线的方程为

因为切线均过点,所以

所以为方程的两组解,

所以直线的方程为.

3)由拋物线定义可知

联立方程,消去整理得.

由一元二次方程根与系数的关系可得

所以

又点在直线上,所以

所以

所以当时, 取得最小值,且取得最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】汽车急刹车的停车距离与诸多因素有关,其中最为关键的两个因素是驾驶员的反应时间和汽车行驶的速度.d表示停车距离,表示反应距离,表示制动距离,.下图是根据美国公路局公布的试验数据制作的停车距离示意图,对应的汽车行驶的速度与停车距离的表格如下图所示

序号

1)根据表格中的数据,建立停车距离与汽车速度的函数模型.可选择模型一:或模型二:(其中v为汽车速度,a,b为待定系数)进行拟合,请根据序号2和序号7两组数据分别求出两个函数模型的解析式;

2)通过计算时的停车距离,分析选择哪一个函数模型的拟合效果更好.

(参考数据:;;.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的五种商品有购买意向.已知该网民购买两种商品的概率均为,购买两种商品的概率均为,购买种商品的概率为.假设该网民是否购买这五种商品相互独立.

1)求该网民至少购买4种商品的概率;

2)用随机变量表示该网民购买商品的种数,求的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,若存在区间,使得上的值域为,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:

AQI指数值

0~50

51~100

101~150

151~200

201~300

>300

空气质量

轻度污染

中度污染

重度污染

严重污染

下图是某市10月1日—20日AQI指数变化趋势:

下列叙述错误的是

A. 这20天中AQI指数值的中位数略高于100

B. 这20天中的中度污染及以上的天数占

C. 该市10月的前半个月的空气质量越来越好

D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的定义域;

(2)时,解关于x的不等式:

(3)时,不等式对任意实数恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,中点.

(1)证明:平面

(2)若平面是边长为2的正三角形,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】偶函数定义域为,其导函数是,当时,有,则关于的不等式的解集为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆上一动点,过点轴,垂足为点,中点为

1)当在圆上运动时,求点的轨迹的方程

Ⅱ)过点的直线交于两点,当时,求线段的垂直平分线方程.

查看答案和解析>>

同步练习册答案