精英家教网 > 高中数学 > 题目详情
8.命题“存在实数x,y,使得x+y>1”是特称命题.(填全称命题或存在命题),用符号表示?x,y∈R,x+y>1..

分析 直接利用特称命题转化为符号语言即可.

解答 解:命题“存在实数x,y,使得x+y>1”是特称命题,
用符号表示为:“?x,y∈R,x+y>1”,
故答案为:特称命题,?x,y∈R,x+y>1.

点评 本题考查特称命题的符号语言的表示方法,基本知识的掌握情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是(  )
A.2x-y=0B.2x-y-2=0C.x+2y-3=0D.x-2y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-4,7),$\overrightarrow{a}$+$\overrightarrow{c}$=0,则$\overrightarrow{c}$在$\overrightarrow{b}$方向上的投影为$-\frac{\sqrt{65}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sin2x+sin2(x+α)+sin2(x+β),其中α,β是适合0≤α≤β≤π的常数
(1)若$α=\frac{π}{4},β=\frac{3π}{4}$,求函数f(x)的最小值;
(2)f(x)是否可能为常值函数?若可能,求出f(x)为常值函数时,α,β的值,如果不可能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.点P在曲线y=x3-x+7上移动,过点P的切线倾斜角的取值范围是(  )
A.[0,π]B.$[0,\frac{π}{2})∪[\frac{3π}{4},π)$C.$[0,\frac{π}{2})∪[\frac{π}{2},π)$D.$[0,\frac{π}{2}]∪[\frac{3π}{4},π)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在下列结论中,正确结论的序号为①②④.
①函数y=sin(kπ-x)(k∈Z)为奇函数;
②若tan(π-x)=2,则${cos^2}x=\frac{1}{5}$;
③函数$y=tan({2x+\frac{π}{6}})$的图象关于点$({\frac{π}{12},0})$对称;
④函数$y=cos({2x+\frac{π}{3}})$的图象的一条对称轴为$x=-\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知α∈[$\frac{π}{2}$,$\frac{3π}{2}$],β∈[-$\frac{π}{2}$,0],且(α-$\frac{π}{2}$)3-sinα-2=0,8β3+2cos2β+1=0,则sin($\frac{α}{2}$+β)的值为(  )
A.0B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A、B、C的对边分别为a、b、c,$\overrightarrow{m}$=(b,cosB),$\overrightarrow{n}$=(2a-c,cosC)且$\overrightarrow{m}$∥$\overrightarrow{n}$,求
(1)角B的大小.
(2)sinA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.鄂西北某湿地公园里,A,B两地相距2km,现在准备在湿地公园里围成一片以AB为一条对角线的平行四边形区域,建立生态观光园.按照规划,围墙总长度为8km.求:
(1)平行四边形另两个顶点C,D所在的轨迹方程;
(2)观光园的最大面积能达到多少?
(3)该湿地公园里有一条直线型步行小径刚好过点A,且与AB成45°角,现要对步行小径进行整修改造,但考虑到今后湿地公园里的步行小径要重新设计改造,因此该步行小径可能被观光园围住的部分暂不整修,那么暂不整修的部分有多长?

查看答案和解析>>

同步练习册答案