精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 )与轴交于 两点, 为椭圆的左焦点,且是边长为2的等边三角形.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于 两点,点关于轴的对称点为不重合),则直线轴交于点,求面积的取值范围.

【答案】(Ⅰ); (Ⅱ).

【解析】试题分析:

(Ⅰ)由是边长为2的等边三角形,很容易得,从而得椭圆方程;

(Ⅱ)直线与椭圆相交问题,设交点为,则有,把直线方程与椭圆方程联立方程组,消元后可得,写出直线方程,求出点坐标为,又直线过定点,因此,可用表示出来,可设换元后求得其取值范围.

试题解析:

(Ⅰ)依题意可得,且

解得 .

所以椭圆的方程是.

(Ⅱ)由,得.

,则.

.

经过点 的直线方程为.

,则 .

故当时,

.

所以

直线过定点

,则

上单调递减

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形:

其中,能表示从集合M到集合N的函数关系的个数是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一批材料可以建成100m长的围墙,现用这些材料在一边靠墙的地方围成一块封闭的矩形场地,中间隔成3个面积相等的小矩形(如图),则围成的矩形场地的最大总面积为(围墙厚度忽略不计)m2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)当时, 求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过椭圆的左顶点斜率为2的直线,与椭圆的另一个交点为,与轴的交点为,已知.

1)求椭圆的离心率;

2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,若轴上存在一定点,使得,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)抛物线的顶点在原点,坐标轴为对称轴,并经过点,求此抛物线的方程.

(Ⅱ)已知圆: ),把圆上的各点纵坐标不变,横坐标伸长到原来的倍得一椭圆.求椭圆方程,并证明椭圆离心率是与无关的常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ,函数 .

(Ⅰ)若有公共点,且在点处切线相同,求该切线方程;

(Ⅱ)若函数有极值但无零点,求实数的取值范围;

(Ⅲ)当 时,求在区间的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 ,向量 =(cosα,sinα),
(1)证明:向量 垂直;
(2)当| |=| |时,求角α.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)若曲线与曲线在它们的交点处具有公共切线,求 的值;

(Ⅱ)当时,若函数在区间内恰有两个零点,求的取值范围;

(Ⅲ)当时,求函数在区间上的最大值.

查看答案和解析>>

同步练习册答案