精英家教网 > 高中数学 > 题目详情

【题目】某网络商城在日开展庆元旦活动,当天各店铺销售额破十亿,为了提高各店铺销售的积极性,采用摇号抽奖的方式,抽取了家店铺进行红包奖励.如图是抽取的家店铺元旦当天的销售额(单位:千元)的频率分布直方图.

1)求抽取的这家店铺,元旦当天销售额的平均值;

2)估计抽取的家店铺中元旦当天销售额不低于元的有多少家;

3)为了了解抽取的各店铺的销售方案,销售额在的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在中的个数的分布列和数学期望.

【答案】1元;(232家;(3)分布列见解析;

【解析】

1)根据频率分布直方图求出各组频率,再由平均数公式,即可求解;

2)求出的频率即可;

3中的个数的所有可能取值为,求出可能值的概率,得到分布列,由期望公式即可求解.

1)频率分布直方图销售额的平均值为

千元,

所以销售额的平均值为元;

2)不低于元的有

3)销售额在的店铺有家,

销售额在的店铺有.选取两家,

设销售额在的有.的所有可能取值为.

所以的分布列为

数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为m为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线的极坐标方程为

1)求曲线C和直线的直角坐标系方程;

2)已知直线与曲线C相交于AB两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,部分对应值如下表:

0

4

5

1

2

2

1

的导函数的图象如图所示,关于的命题正确的是(

A.函数是周期函数

B.函数上是减函数

C.函数的零点个数可能为01234

D.时,函数 4个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】月,第二届“一带一路”国际合作高峰论坛在北京成功举办.“一带一路”是由中国倡议,积极发展中国与沿线国家经济合作伙伴关系的区域合作平台,共同打造政治互信、经济融合、文化包容的利益、命运和责任共同体.深受有关国家的积极响应.某公司搭乘这班快车,计划对沿线甲、乙、丙三个国进行投资,其中选择一国投资两次,其余两国各投资一次.共四次投资.每次投资,公司设置投资金额共有(亿元)四个档次,其中档投资至多为一次,档投资至少为一次,档投资不能在同一国中被投两次,则不同的投资方案(不考虑投资的先后顺序)有(

A.B.C.D.以上答案均不正确

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为,t为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求直角坐标系下直线与曲线的普通方程;

2)设直线与曲线交于点(二者可重合),交轴于,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是中国古代的数学名著,其中《方田》一章给出了弧田面积的计算公式.如图所示,弧田是由圆弧AB和其所对弦AB围成的图形,若弧田的弧AB长为4π,弧所在的圆的半径为6,则弧田的弦AB长是__________,弧田的面积是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了丰富学生的课外文化生活,某中学积极探索开展课外文体活动的新途径及新形式,取得了良好的效果.为了调查学生的学习积极性与参加文体活动是否有关,学校对200名学生做了问卷调查,列联表如下:

参加文体活动

不参加文体活动

合计

学习积极性高

80

学习积极性不高

60

合计

200

已知在全部200人中随机抽取1人,抽到学习积极性不高的学生的概率为.

1)请将上面的列联表补充完整;

2)是否有99.9%的把握认为学习积极性高与参加文体活动有关?请说明你的理由;

3)若从不参加文体活动的同学中按照分层抽样的方法选取5人,再从所选出的5人中随机选取2人,求至少有1人学习积极性不高的概率.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学组织了迎新杯知识竞赛,随机抽取了120名考生的成绩(单位:分),并按[95105),[105115),[115125),[125135),[135145]分成5组,制成频率分布直方图,如图所示.

1)若规定成绩在120分以上的为优秀,估计样本中成绩优秀的考生人数;

2)求该中学这次知识竞赛成绩的平均数与方差的估计值(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)当时,求曲线在点处切线的方程;

(2)当时,求函数的单调区间;

(3)若,证明对任意恒成立.

查看答案和解析>>

同步练习册答案