精英家教网 > 高中数学 > 题目详情
20.在直角坐标系中,已知圆N的圆心N(3,4),且过点A(0,4).
(1)求圆N的方程;
(2)若过点D(3,6)的直线l被圆N所截得的弦长等于$4\sqrt{2}$,求直线l的斜率.

分析 (1)求出圆的半径,即可求圆N的方程;
(2)根据题意得到直线l斜率存在,设为k,表示出直线l方程,利用点到直线的距离公式表示出圆心到直线l的距离d,根据r与弦长,利用垂径定理及勾股定理列出关于k的方程,求出方程的解得到k的值即可.

解答 解:(1)设圆N的方程为(x-3)2+(y-4)2=r2
由题意知r=3,∴圆N的方程为(x-3)2+(y-4)2=9;
(2)设直线l方程为y-6=k(x-3),即kx-y-3k+6=0,
∵圆心(3,4)到直线l的距离d=$\frac{2}{\sqrt{1+{k}^{2}}}$,r=3,弦长为4$\sqrt{2}$,
得${({2\sqrt{2}})^2}={r^2}-{d^2}$,化简得1+k2=4,即$k=±\sqrt{3}$…(10分)

点评 此题考查了直线与圆相交的性质,涉及的知识有:点到直线的距离公式,圆的标准方程,垂径定理,以及勾股定理,熟练掌握公式及定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数$f(x)=Asin(ωx+ϕ)(x∈R,A>0,ω>0,|ϕ|<\frac{π}{2})$的部分图象如图所示,则ω,ϕ分别为(  )
A.ω=π,ϕ=$\frac{π}{6}$B.$ω=2π,ϕ=\frac{π}{6}$C.$ω=π,ϕ=\frac{π}{3}$D.$ω=2π,ϕ=\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄大点频数分布及支持“生育二胎”人数如表:
年龄[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
频数510151055
支持“生育二胎”4512821
(I)由以上统计数据填下面2乘2列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:
年龄不低于45岁的人数年龄低于45岁的人数合计
支持a=c=
不支持b=d=
合计
(Ⅱ)若对年龄在[5,15)的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?参考数据:P(K2≥3.841)=0.050,P(K2≥6.635)=0.010,P(K2≥10.828)=0.001  
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$log_7^{\root{3}{49}}$的值为(  )
A.2B.$\frac{2}{3}$C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知△ABC的外心O满足$\overrightarrow{AO}$=$\frac{1}{3}$($\overrightarrow{AB}+\overrightarrow{AC}$),则cosA=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知圆方程为x2+y2-2x-9=0,直线方程mx+y+m-2=0,那么直线与圆的位置关系(  )
A.相交B.相离C.相切D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在钝角△ABC中,c=$\sqrt{3}$,b=1,B=$\frac{π}{6}$,则△ABC的面积等于(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$D.$\frac{\sqrt{3}}{2}$或$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设一组数据的方差是0.1,将这组数据的每个数据都乘以10,所得到的一组新数据的方差是(  )
A.10B.0.1C.0.001D.100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-$\frac{a(x-1)}{x+1}$.
(1)若函数f(x)在(1,+∞)上为单调递增函数,求实数a的取值范围;
(2)设m,n∈(0,+∞),且m≠n,求证:$\frac{m-n}{lnm-lnn}$-$\frac{m+n}{2}$<0.

查看答案和解析>>

同步练习册答案