【题目】已知椭圆C1: 的离心率为 ,焦距为 ,抛物线C2:x2=2py(p>0)的焦点F是椭圆C1的顶点. (Ⅰ)求C1与C2的标准方程;
(Ⅱ)C1上不同于F的两点P,Q满足 ,且直线PQ与C2相切,求△FPQ的面积.
【答案】解:(Ⅰ)设椭圆C1的焦距为2c,依题意有 , , 解得 ,b=2,故椭圆C1的标准方程为 .
又抛物线C2:x2=2py(p>0)开口向上,故F是椭圆C1的上顶点,
∴F(0,2),∴p=4,
故抛物线C2的标准方程为x2=8y.…(5分)
(Ⅱ)由题意得直线PQ的斜率存在.设直线PQ的方程为y=kx+m,
设P(x1 , y1),Q(x2 , y2),则 , ,
∴ ,
即 (*)
联立 ,消去y整理得,(3k2+1)x2+6kmx+3m2﹣12=0(**).
依题意,x1 , x2是方程(**)的两根,△=144k2﹣12m2+48>0,
∴ , ,
将x1+x2和x1x2代入(*)得m2﹣m﹣2=0,
解得m=﹣1,(m=2不合题意,应舍去).
联立 ,消去y整理得,x2﹣8kx+8=0,
令△'=64k2﹣32=0,解得 .
经检验, ,m=﹣1符合要求.
此时, ,
∴
【解析】(Ⅰ)设椭圆C1的焦距为2c,依题意有 , ,由此能求出椭圆C1的标准方程;又抛物线C2:x2=2py(p>0)开口向上,故F是椭圆C1的上顶点,由此能求出抛物线C2的标准方程.(Ⅱ)设直线PQ的方程为y=kx+m,设P(x1 , y1),Q(x2 , y2),则 , ,联立 ,得(3k2+1)x2+6kmx+3m2﹣12=0,由此利用根的判别式、韦达定理、弦长公式,结合已知件能求出△FPQ的面积.
科目:高中数学 来源: 题型:
【题目】将函数y=sinx的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移 个单位,得到的图象对应的解析式是( )
A.y=sin(2x+ )
B.y=sin( x+ )
C.y=sin( x+ )
D.y=sin(2x+ )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图, 为圆的直径,点, 在圆上, ,矩形和圆所在的平面互相垂直,已知, .
(Ⅰ)求证:平面平面;
(Ⅱ)求直线与平面所成角的大小;
(Ⅲ)当的长为何值时,二面角的大小为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项不为零的数列的前项和为,且, , .
(1)若成等比数列,求实数的值;
(2)若成等差数列,
①求数列的通项公式;
②在与间插入个正数,共同组成公比为的等比数列,若不等式对任意的恒成立,求实数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=2BC=4,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE.若M为线段A1C的中点,则在△ADE翻转过程中: ①|BM|是定值;
②点M在圆上运动;
③一定存在某个位置,使DE⊥A1C;
④一定存在某个位置,使MB∥平面A1DE.
其中正确的命题是( )
A.①②③
B.①②④
C.①③④
D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(sinx+cosx)2+2cos2x﹣2.
(1)求函数f(x)的最小正周期及单调递增区间;
(2)当x∈[ , ]时,求函数f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD底面ABCD, ;
(1)求证:平面PAB平面PCD;
(2)若过点B的直线垂直平面PCD,求证: //平面PAD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com