精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C1 的离心率为 ,焦距为 ,抛物线C2:x2=2py(p>0)的焦点F是椭圆C1的顶点. (Ⅰ)求C1与C2的标准方程;
(Ⅱ)C1上不同于F的两点P,Q满足 ,且直线PQ与C2相切,求△FPQ的面积.

【答案】解:(Ⅰ)设椭圆C1的焦距为2c,依题意有 , 解得 ,b=2,故椭圆C1的标准方程为
又抛物线C2:x2=2py(p>0)开口向上,故F是椭圆C1的上顶点,
∴F(0,2),∴p=4,
故抛物线C2的标准方程为x2=8y.…(5分)
(Ⅱ)由题意得直线PQ的斜率存在.设直线PQ的方程为y=kx+m,
设P(x1 , y1),Q(x2 , y2),则

(*)
联立 ,消去y整理得,(3k2+1)x2+6kmx+3m2﹣12=0(**).
依题意,x1 , x2是方程(**)的两根,△=144k2﹣12m2+48>0,

将x1+x2和x1x2代入(*)得m2﹣m﹣2=0,
解得m=﹣1,(m=2不合题意,应舍去).
联立 ,消去y整理得,x2﹣8kx+8=0,
令△'=64k2﹣32=0,解得
经检验, ,m=﹣1符合要求.
此时,

【解析】(Ⅰ)设椭圆C1的焦距为2c,依题意有 ,由此能求出椭圆C1的标准方程;又抛物线C2:x2=2py(p>0)开口向上,故F是椭圆C1的上顶点,由此能求出抛物线C2的标准方程.(Ⅱ)设直线PQ的方程为y=kx+m,设P(x1 , y1),Q(x2 , y2),则 ,联立 ,得(3k2+1)x2+6kmx+3m2﹣12=0,由此利用根的判别式、韦达定理、弦长公式,结合已知件能求出△FPQ的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,角 的对边分别为 .已知

(1)求角的大小;

2)若 的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sinx的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移 个单位,得到的图象对应的解析式是(
A.y=sin(2x+
B.y=sin( x+
C.y=sin( x+
D.y=sin(2x+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为圆的直径,点 在圆上, ,矩形和圆所在的平面互相垂直,已知

(Ⅰ)求证:平面平面

(Ⅱ)求直线与平面所成角的大小;

(Ⅲ)当的长为何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项不为零的数列的前项和为,且

1)若成等比数列,求实数的值;

2)若成等差数列,

①求数列的通项公式;

②在间插入个正数,共同组成公比为的等比数列,若不等式对任意的恒成立,求实数的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=2BC=4,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE.若M为线段A1C的中点,则在△ADE翻转过程中: ①|BM|是定值;
②点M在圆上运动;
③一定存在某个位置,使DE⊥A1C;
④一定存在某个位置,使MB∥平面A1DE.
其中正确的命题是(

A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(sinx+cosx)2+2cos2x﹣2.
(1)求函数f(x)的最小正周期及单调递增区间;
(2)当x∈[ ]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以为顶点的六面体中, 均为等边三角形,且平面平面 平面 .

(1)求证: 平面

(2)求此六面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD底面ABCD,

(1)求证:平面PAB平面PCD;

(2)若过点B的直线垂直平面PCD,求证: //平面PAD.

查看答案和解析>>

同步练习册答案