精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两支球队进行总决赛,比赛采用七场四胜制,即若有一队先胜四场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为.据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.

(I)求总决赛中获得门票总收入恰好为300万元的概率;

(II)设总决赛中获得门票总收入为X,求X的均值E(X).

【答案】(1) ;(2)377.5万元.

【解析】试题分析:

(1)由题意结合等差数列的性质可得总决赛共比赛了5场,结合二项分布公式可得总决赛中获得门票总收入恰好为300万元的概率是

(2)由题意可知随机变量X可取的值为220300390490.结合随机变量的值求得概率值,然后求解均值可得E(X)=377.5万元.

试题解析:

(1)依题意,每场比赛获得的门票收入组成首项为40,公差为10的等差数列.

设此数列为{an},则易知a140an10n30

所以Sn300.

解得n5n=-12(舍去),所以总决赛共比赛了5

则前4场比赛的比分必为13,且第5场比赛为领先的球队获胜,其概率为.

所以总决赛中获得门票总收入恰好为300万元的概率为.

(2)随机变量X可取的值为S4S5S6S7,即220300390490.

,

,

,

,

所以X的分布列为

X

220

300

390

490

P

所以X的均值为E(X)220×300×390×490×377.5(万元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设集合A={x|1<x<2},B={x|2a﹣1<x<2a+1}.
(Ⅰ)若AB,求a的取值范围;
(Ⅱ)若A∩B=,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(1+x),g(x)=loga(1﹣x),其中(a>0且a≠1),设h(x)=f(x)﹣g(x).
(1)求h(x)的定义域;
(2)判断h(x)的奇偶性,并说明理由;
(3)若a=log327+log2,求使f(x)>1成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知c>0,设命题p:函数ycx为减函数.命题q:当时,函数恒成立.如果“pq”为真命题,“pq”为假命题,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点Q(ρ,θ),分别按下列条件求出点P的极坐标.
(1)点P是点Q关于极点O的对称点;
(2)点P是点Q关于直线θ= 的对称点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学将100名髙一新生分成水平相同的甲、乙两个平行班”,每班50.陈老师采用AB两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为成绩优秀

 

0.05

0.01

0.001

 

3.841

6.635

10.828

(I)从乙班随机抽取2名学生的成绩,成绩优秀的个数为,求的分布列和数学期望

(II)根据频率分布直方图填写下面2 x2列联表,并判断是否有95%的把握认为:“成绩优秀与教学方式有关.

甲班A方式)

乙班(B方式)

总计

成绩优秀

成绩不优秀

总计

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列五个正方体图形中,是正方体的一条对角线,点MNP分别为其所在棱的中点,求能得出MNP的图形的序号(写出所有符合要求的图形序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设过原点 O 的直线与圆 C : 的一个交点为 P ,点 M 为线段 OP 的中点。
(1)求圆 C 的极坐标方程;
(2)求点 M 轨迹的极坐标方程,并说明它是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)= (a∈R)是奇函数,函数g(x)= 的定义域为(﹣1,+∞).
(1)求a的值;
(2)若g(x)= 在(﹣1,+∞)上递减,根据单调性的定义求实数m的取值范围;
(3)在(2)的条件下,若函数h(x)=f(x)+g(x)在区间(﹣1,1)上有且仅有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案