分析 易求∠ACB=30°,在△ABC中,由正弦定理可求BC,在△BCD中,由正弦定理可求sin∠BDC,再由∠BDC=θ+90°可得答案.
解答 解:∵∠CBD=45°,∴∠ACB=30°,
在△ABC中,由正弦定理,得BC=$\frac{100sin15°}{sin30°}$=50($\sqrt{6}$-$\sqrt{2}$),
在△BCD中,由正弦定理,得$\frac{50(\sqrt{6}-\sqrt{2})}{sin∠BDC}=\frac{50}{sin45°}$,
∴sin∠BDC=$\sqrt{3}$-1,即sin(θ+90°)=$\sqrt{3}$-1,
∴cosθ=$\sqrt{3}$-1,
故答案为$\sqrt{3}$-1.
点评 该题考查正弦定理在实际问题中的应用,属基础题,由实际问题恰当构建数学模型是解题关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-$\frac{4}{3}$,$\frac{1}{6}$] | B. | (0,$\frac{1}{6}$] | C. | (0,$\frac{1}{6}$) | D. | (-$\frac{4}{3}$,$\frac{1}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{8}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{5}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | sin($-\frac{π}{18}$)>sin($-\frac{π}{10}$) | B. | sin250°>sin260° | C. | tan$\frac{π}{4}$>tan$\frac{π}{6}$ | D. | tan138°>tan143° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com