精英家教网 > 高中数学 > 题目详情
15.如图所示,在坡度一定的山坡A处测得山顶上一建筑物CD的顶端C对于山坡的斜度为15°,向山顶前进100m到达B处,又测得C对于山坡的斜度为45°,若CD=50m,山坡对于地平面的坡度为θ,则cosθ=$\sqrt{3}$-1.

分析 易求∠ACB=30°,在△ABC中,由正弦定理可求BC,在△BCD中,由正弦定理可求sin∠BDC,再由∠BDC=θ+90°可得答案.

解答 解:∵∠CBD=45°,∴∠ACB=30°,
在△ABC中,由正弦定理,得BC=$\frac{100sin15°}{sin30°}$=50($\sqrt{6}$-$\sqrt{2}$),
在△BCD中,由正弦定理,得$\frac{50(\sqrt{6}-\sqrt{2})}{sin∠BDC}=\frac{50}{sin45°}$,
∴sin∠BDC=$\sqrt{3}$-1,即sin(θ+90°)=$\sqrt{3}$-1,
∴cosθ=$\sqrt{3}$-1,
故答案为$\sqrt{3}$-1.

点评 该题考查正弦定理在实际问题中的应用,属基础题,由实际问题恰当构建数学模型是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2.将△ABD沿AB折起,使得面ABD⊥面ABC,如图二,E为AC的中点
(Ⅰ)求证:BD⊥AC;
(Ⅱ)求△ADC的面积;
(Ⅲ)求三棱锥A-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知梯形CEPD如图(1)所示,其中PD=8,CE=6,A为线段PD的中点,四边形ABCD为正方形,现沿AB进行折叠,使得平面PABE⊥平面ABCD,得到如图(2)所示的几何体.已知当点F满足$\overrightarrow{AF}$=$λ\overrightarrow{AB}$(0<λ<1)时,平面DEF⊥平面PCE,则λ的值为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=x3+x-2有 (  )个零点.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某高校在2015年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[160,165),第2组[165,170),第3组[170,175),第4组[175,180),第5组[180,185)得到的频率分布直方图如图所示.

(1)分别求出第3、4、5组的频率;
(2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)计算这100名学生笔试成绩的平均值,中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=3ax4-2(3a+1)x2+4x,在(-1,1)上是增函数,求a的取值范围(  )$.
A.[-$\frac{4}{3}$,$\frac{1}{6}$]B.(0,$\frac{1}{6}$]C.(0,$\frac{1}{6}$)D.(-$\frac{4}{3}$,$\frac{1}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是(  )
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{π}{5}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆,设OA=1,则阴影部分的面积是$\frac{π-2}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列比较大小错误的是(  )
A.sin($-\frac{π}{18}$)>sin($-\frac{π}{10}$)B.sin250°>sin260°C.tan$\frac{π}{4}$>tan$\frac{π}{6}$D.tan138°>tan143°

查看答案和解析>>

同步练习册答案