分析 求出函数的导数,求得切线的斜率,由两直线垂直的条件可得a-b=2,再由题意可得a-$\frac{b}{{x}^{2}}$≥0在区间[$\frac{1}{2}$,+∞)上恒成立,即有$\frac{b}{a}$≤x2的最小值,解b的不等式即可得到最大值.
解答 解:函数f(x)=ax+$\frac{b}{x}$(b>0)的导数为f′(x)=a-$\frac{b}{{x}^{2}}$,
在点P(1,f(1))处的切线斜率为k=a-b,
由切线与直线x+2y-1=0垂直,可得k=a-b=2,即a=b+2,
由函数f(x)在区间[$\frac{1}{2}$,+∞)上是单调递增,可得
a-$\frac{b}{{x}^{2}}$≥0在区间[$\frac{1}{2}$,+∞)上恒成立,
即有$\frac{b}{a}$≤x2的最小值,
由x≥$\frac{1}{2}$可得x2的最小值为$\frac{1}{4}$.
即有$\frac{b}{b+2}$≤$\frac{1}{4}$,由b>0,可得b≤$\frac{2}{3}$.
则b的最大值为$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.
点评 本题考查导数的运用:求切线的斜率和单调性,考查两直线垂直的条件和不等式恒成立恒成立问题的解法,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | {3} | B. | {-2} | C. | {3,-2} | D. | {∅} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com