【题目】已知如表为“五点法”绘制函数f(x)=Asin(ωx+φ)图象时的五个关键点的坐标(其中A>0,ω>0,|φ|<π)
x | ﹣ | ||||
f(x) | 0 | 2 | 0 | ﹣2 | 0 |
(Ⅰ)请写出函数f(x)的最小正周期和解析式;
(Ⅱ)求函数f(x)的单调递减区间;
(Ⅲ)求函数f(x)在区间[0, ]上的取值范围.
【答案】解:(Ⅰ)由表格可得A=2, = + ,∴ω=2,结合五点法作图可得2 +φ= ,∴φ= , ∴f(x)=2sin(2x+ ),它的最小正周期为 =π.
(Ⅱ)令2kπ﹣ ≤2x+ ≤2kπ+ ,求得kπ﹣ ≤x≤kπ+ ,
可得函数f(x)的单调递减区间为[kπ﹣ ,kπ+ ],k∈Z.
(Ⅲ)在区间[0, ]上,2x+ ∈[ , ],sin(2x+ )∈[﹣ ,1],f(x)∈[﹣ ,2],
即函数f(x)的值域为[﹣ ,2].
【解析】(Ⅰ)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数f(x)的解析式,从而求得它的周期.(Ⅱ)利用正弦函数的单调性,求得函数f(x)的单调递减区间.(Ⅲ)利用正弦函数的定义域和值域,求得函数f(x)在区间[0, ]上的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ﹣aln(1+x)(a∈R),g(x)=x2emx(m∈R).
(1)当a=1,求函数f(x)的最大值
(2)当a<0,且对任意实数x1 , x2∈[0,2],f(x1)+1≥g(x2)恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知m∈R,复数z= +(m2+2m﹣3)i,当m为何值时,
(1)z∈R;
(2)z是纯虚数;
(3)z对应的点位于复平面第二象限;
(4)(选做)z对应的点在直线x+y+3=0上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,PD⊥底面ABCD,点M、N分别是棱AB、CD的中点.
(1)证明:BN⊥平面PCD;
(2)在线段PC上是否存在点H,使得MH与平面PCD所成最大角的正切值为 ,若存在,请求出H点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若、是两个相交平面,则在下列命题中,真命题的序号为( )
①若直线,则在平面内一定不存在与直线平行的直线.
②若直线,则在平面内一定存在无数条直线与直线垂直.
③若直线,则在平面内不一定存在与直线垂直的直线.
④若直线,则在平面内一定存在与直线垂直的直线.
A. ①③ B. ②③ C. ②④ D. ①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x2+ax+a)e﹣x , (a为常数,e为自然对数的底).
(1)当a=0时,求f′(2);
(2)若f(x)在x=0时取得极小值,试确定a的取值范围;
(3)在(2)的条件下,设由f(x)的极大值构成的函数为g(a),将a换元为x,试判断曲线y=g(x)是否能与直线3x﹣2y+m=0(m为确定的常数)相切,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记所有非零向量构成的集合为V,对于 , ∈V, ≠ ,定义V( , )=|x∈V|x =x |
(1)请你任意写出两个平面向量 , ,并写出集合V( , )中的三个元素;
(2)请根据你在(1)中写出的三个元素,猜想集合V( , )中元素的关系,并试着给出证明;
(3)若V( , )=V( , ),其中 ≠ ,求证:一定存在实数λ1 , λ2 , 且λ1+λ2=1,使得 =λ1 +λ2 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知直线与曲线在第一象限和第三象限分别交于点和点,分别由点、向轴作垂线,垂足分别为、,记四边形的面积为S.
⑴ 求出点、的坐标及实数的取值范围;
⑵ 当取何值时,S取得最小值,并求出S的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次数学测验中,有6位同学的平均成绩为117分,用表示编号为的同学所得成 绩,6位同学成绩如表,
(1)求及这6位同学成绩的方差;
(2)从这6位同学中随机选出2位同学,则恰有1位同学成绩在区间中的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com