已知函数.
(1)求函数.的单调区间;
(2)设函数的极值.
(1) 函数的单调增区间为,单调减区间为
(2) 当时,无极值;当,在处取得极小值,无极大值。
解析试题分析:(1) 求单调区间只需解不等式即可;
(2) ,在求极值时要对参数讨论,显然当时为增函数,无极值,当时可求得的根,再讨论两侧的单调性;判断极值的方法是先求得的根,再看在每个根的两侧导函数的正负是否一致,只有两侧导函数的符号不一样才能确定这个根是极值点.这个判断过程通常要放在一个表格中去体现.
试题解析:(1)
当时, ,
当时, ,
故函数的单调增区间为,单调减区间为.
(2) 由题意:
①当时,,为上的增函数,所以无极值。
②当时,令得,
,;,
所以在上单调递减,在上单调递增
所以在处取得极小值,且极小值为,无极大值
综上,当时,无极值;当,在处取得极小值,无极大值。
考点:1、函数的单调区间;2、函数的极值.
科目:高中数学 来源: 题型:解答题
某地政府为科技兴市,欲在如图所示的矩形ABCD的非农业用地中规划出一个高科技工业园区(如图中阴影部分),形状为直角梯形QPRE(线段EQ和RP为两个底边),已知其中AF是以A为顶点、AD为对称轴的抛物线段.试求该高科技工业园区的最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,其中.
(1)当时,求函数在处的切线方程;
(2)若函数在区间(1,2)上不是单调函数,试求的取值范围;
(3)已知,如果存在,使得函数在处取得最小值,试求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
学校操场边有一条小沟,沟沿是两条长150米的平行线段,沟宽为2米,,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为,对称轴与地面垂直,沟深2米,沟中水深1米.
(Ⅰ)求水面宽;
(Ⅱ)如图1所示形状的几何体称为柱体,已知柱体的体积为底面积乘以高,求沟中的水有多少立方米?
(Ⅲ)现在学校要把这条水沟改挖(不准填土)成截面为等腰梯形的沟,使沟的底面与地面平行,沟深不变,两腰分别与抛物线相切(如图2),问改挖后的沟底宽为多少米时,所挖的土最少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,.
(1)若,则,满足什么条件时,曲线与在处总有相同的切线?
(2)当时,求函数的单调减区间;
(3)当时,若对任意的恒成立,求的取值的集合.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com