精英家教网 > 高中数学 > 题目详情

【题目】定义在R上的函数f(x)的图象关于点(﹣ ,0)成中心对称,且对任意的实数x都有 ,f(﹣1)=1,f(0)=﹣2,则f(1)+f(2)++f(2 017)=(
A.0
B.﹣2
C.1
D.﹣4

【答案】C
【解析】解:由f(x)=﹣f(x+ )得f(x+ )=﹣f(x),

∴f(x+3)=﹣f(x+ )=f(x),即函数的周期为3,

又f(﹣1)=1,∴f(2)=f(﹣1+3)=f(﹣1)=1,

且f( )=﹣f(﹣1)=﹣1,

∵函数图象关于点( ,0)呈中心对称,

∴f(x)+f(﹣x﹣ )=0,则f(x)=﹣f(﹣x﹣ ),

∴f(1)=﹣f(﹣ )=﹣f( )=1,

∵f(0)=﹣2,∴f(3)=f(0)=﹣2,

则f(1)+f(2)+f(3)=1+1﹣2=0

∴f(1)+f(2)++f(2017)=f(1)=1,

故选C.

根据f(x)=﹣f(x+ )求出函数的周期,由函数的图象的对称中心列出方程,由条件、周期性、对称性求出f(1)、f(2)、f(3)的值,由周期性求出答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数 ,其中0<ω<2; (Ⅰ)若f(x)的最小正周期为π,求f(x)的单调增区间;
(Ⅱ)若函数f(x)的图象的一条对称轴为 ,求ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数y=2sin2x的图象向左平移 个单位长度,则平移后的图象的对称轴为(
A.x= (k∈Z)
B.x= + (k∈Z)
C.x= (k∈Z)
D.x= + (k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在三棱柱ABC﹣A1B1C1中,已知AB⊥侧面BB1C1C,BC= ,AB=CC1=2,∠BCC1= ,点E在棱BB1上.

(1)求C1B的长,并证明C1B⊥平面ABC;
(2)若BE=λBB1 , 试确定λ的值,使得二面角A﹣C1E﹣C的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=x2﹣2ax+5.
(1)若a>1,且函数f(x)的定义域和值域均为[1,a],求实数a的值;
(2)若不等式x|f(x)﹣x2|≤1对x∈[ ]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx在x=1处取得极值2.
(1)求f(x)的解析式;
(2)若(m+3)x﹣x2ex+2x2≤f(x)对于任意的x∈(0,+∞)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知侧棱垂直底面的三棱柱ABC﹣A1B1C1中,AC=3,AB=5,BC=4,点D是AB的中点.

(1)求证:AC⊥BC;
(2)求证:AC1∥平面CDB1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈R,x2+1>m;命题q:指数函数f(x)=(3﹣m)x是增函数.若“p∧q”为假命题且“p∨q”为真命题,则实数m的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2 + sin cos . (Ⅰ)求f(x)的最小正周期;
(Ⅱ)若x∈[ ,π],求f(x)的最大值与最小值.

查看答案和解析>>

同步练习册答案