分析 (1)根据题意,建立如图所示的空间坐标系,利用坐标表示出$\overrightarrow{AP}$、$\overrightarrow{BC}$,证明$\overrightarrow{AP}$⊥$\overrightarrow{BC}$即可;
(2)根据M为AP上一点,且AM=3,求出点M的坐标,再求出平面BMC与平面AMC的法向量,
利用法向量证明平面AMC⊥平面BMC.
解答 解:以O为原点,以AD方向为Y轴正方向,以射线OP的方向为Z轴正方向,建立空间坐标系,
如图所示;
则O(0,0,0),A(0,-3,0),B(4,2,0),C(-4,2,0),P(0,0,4)
(1)$\overrightarrow{AP}$=(0,3,4),$\overrightarrow{BC}$=(-8,0,0),
∴$\overrightarrow{AP}$•$\overrightarrow{BC}$=0×(-8)+3×0+4×0=0,
∴$\overrightarrow{AP}$⊥$\overrightarrow{BC}$,即AP⊥BC;
(2)∵M为AP上一点,且AM=3,
∴M(0,-$\frac{6}{5}$,$\frac{12}{5}$),
∴$\overrightarrow{AM}$=(0,$\frac{9}{5}$,$\frac{12}{5}$),
$\overrightarrow{BM}$=(-4,-$\frac{16}{5}$,$\frac{12}{5}$),
$\overrightarrow{CM}$=(4,-$\frac{16}{5}$,$\frac{12}{5}$);
设平面BMC的法向量为$\overrightarrow{n}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BM}=0}\\{\overrightarrow{n}•\overrightarrow{CM}=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{-4a-\frac{16}{5}b+\frac{12}{5}c=0}\\{4a-\frac{16}{5}b+\frac{12}{5}c=0}\end{array}\right.$,
令b=1,则$\overrightarrow{n}$=(0,1,$\frac{4}{3}$);
设平面AMC的法向量为$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AM}=0}\\{\overrightarrow{m}•\overrightarrow{AN}=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{\frac{9}{5}y+\frac{12}{5}z=0}\\{4x-\frac{16}{5}y+\frac{12}{5}z=0}\end{array}\right.$,
令x=5,
则$\overrightarrow{m}$=(5,4,-3);
由$\overrightarrow{n}$•$\overrightarrow{m}$=0×5+1×4+$\frac{4}{3}$×(-3)=0,
得$\overrightarrow{n}$⊥$\overrightarrow{m}$;即平面AMC⊥平面BMC.
点评 本题考查了线线垂直与面面垂直的判定与应用问题,解题时可以建立空间坐标系,把垂直问题转化为向量垂直即数量积为0来解答,是综合性题目.
科目:高中数学 来源: 题型:选择题
A. | t1+t2 | B. | t1-t2 | C. | $\frac{1}{{t}_{1+}{t}_{2}}$ | D. | $\frac{1}{{t}_{1-}{t}_{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | π | B. | $\frac{2}{3}$π | C. | $\sqrt{2}$π | D. | $\sqrt{3}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-1,1) | B. | [-∞,$\frac{1}{13}$] | C. | [-$\frac{1}{13}$,$\frac{1}{13}$] | D. | [-$\frac{1}{5}$,$\frac{1}{5}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com