精英家教网 > 高中数学 > 题目详情
(2012•浦东新区一模)如图所示的几何体,是将高为2、底面半径为1的圆柱沿过旋转轴的平面切开后,将其中一半沿切面向右水平平移后形成的封闭体.O1O2
O
2
分别为AB,BC,DE的中点,F为弧AB的中点,G为弧BC的中点.
(1)求这个几何体的表面积;
(2)求异面直线AF与
GO
2
所成的角的大小(结果用反三角函数值表示).
分析:(1)由题意,变化后形成的封闭体表面比原来的圆柱表面多了两个轴截面的面积,由此不难结合已知数据计算出它的表面积.
(2)连接AF、CG、CO2',则可得∠CGO2'或其补角为异面直线AF与GO2'所成的角.然后在△CGO2'中,计算出各边的长,利用余弦定理即可求出异面直线AF与GO2'所成的角的余弦值,从而得出异面直线AF与GO2'所成的角大小.
解答:解:(1)将圆柱按题中方法切开,再平移后接成封闭体后,该几何体的表面积比原来的圆柱表面积多了两个轴截面矩形的面积,
因此它的表面积为S=S圆柱表+2SBCDE=(2π×12+2π×1×2)+2×2×2=6π+8;   …(6分)
(2)连接AF、CG、CO2',则AF∥CG,
所以∠CGO2'或其补角为异面直线AF与GO2'所成的角.…(9分)
在△CGO2'中,GO2'=CO2'=
22+12
=
5
,CG=
12+12
=
2
,…(12分)
∵cos∠CGO2'=
5+2-5
5
×
2
=
10
10

∴∠CGO2'=arccos
10
10
,即异面直线AF与GO2'所成的角的大小为arccos
10
10
.…(14分)
点评:本题将一个圆柱体一分为二,求平移后的表面积和异面直线所成角的大小,着重考查了旋转体表面积的求法和异面直线所成角等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•浦东新区一模)函数y=
log2(x-2) 
的定义域为
[3,+∞)
[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)若X是一个非空集合,M是一个以X的某些子集为元素的集合,且满足:
①X∈M、∅∈M;
②对于X的任意子集A、B,当A∈M且B∈M时,有A∪B∈M;
③对于X的任意子集A、B,当A∈M且B∈M时,A∩B∈M;
则称M是集合X的一个“M-集合类”.
例如:M={∅,{b},{c},{b,c},{a,b,c}}是集合X={a,b,c}的一个“M-集合类”.已知集合X={a,b,c},则所有含{b,c}的“M-集合类”的个数为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)手机产业的发展催生了网络新字“孖”.某学生准备在计算机上作出其对应的图象,其中A(2,2),如图所示.在作曲线段AB时,该学生想把函数y=x
1
2
,x∈[0,2]
的图象作适当变换,得到该段函数的曲线.请写出曲线段AB在x∈[2,3]上对应的函数解析式
y=
2
(x-2)
1
2
+2
y=
2
(x-2)
1
2
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)设复数z满足|z|=
10
,且(1+2i)z(i是虚数单位)在复平面上对应的点在直线y=x上,求z.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)已知z=
1
1+i
,则
.
z
=
1
2
+
1
2
i
1
2
+
1
2
i

查看答案和解析>>

同步练习册答案