ÒÑÖªÊýÁÐanÖУ¬a1=1£¬a2=a-1£¨a¡Ù1£¬aΪʵ³£Êý£©£¬Ç°nÏîºÍSnºãΪÕýÖµ£¬ÇÒµ±n¡Ý2ʱ£¬£®
£¨1£©ÇóÖ¤£ºÊýÁÐSnÊǵȱÈÊýÁУ»
£¨2£©ÉèanÓëan+2µÄµÈ²îÖÐÏîΪA£¬±È½ÏAÓëan+1µÄ´óС£»
£¨3£©ÉèmÊǸø¶¨µÄÕýÕûÊý£¬a=2£®ÏÖ°´ÈçÏ·½·¨¹¹ÔìÏîÊýΪ2mÓÐÇîÊýÁÐbn£ºµ±k=m+1£¬m+2£¬¡­£¬2mʱ£¬bk=ak•ak+1£»µ±k=1£¬2£¬¡­£¬mʱ£¬bk=b2m-k+1£®ÇóÊýÁÐbnµÄÇ°nÏîºÍΪTn£¨n¡Ü2m£¬n¡ÊN*£©£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©Ö±½ÓÀûÓÃanºÍSnµÄ¹Øϵ£ºan=Sn-Sn-1 £¨n¡Ý2£©´úÈëÕûÀí¿ÉµÃSn2=Sn-1Sn+1ÔÙ¼ìÑéÇ°Á½ÏîÊÇ·ñ³ÉÁ¢¼´¿ÉÖ¤Ã÷½áÂÛ£®
£¨2£©ÏÈÓÉ£¨1£©µÄ½áÂÛ½áºÏanºÍSnµÄ¹Øϵ£ºan=Sn-Sn-1 £¨n¡Ý2£©Çó³öÊýÁеÄͨÏÔÚÈÃAÓëan+1×÷²î£¬ÀûÓÃSnºãΪÕýÖµ¶Ôa½øÐÐÌÖÂÛ¼´¿É±È½Ï´óС£»
£¨3£©ÓÉÌõ¼þ¿ÉµÃµ±m+1¡Ük¡Ü2mʱ£¬bk=ak•ak+1=22k-3£®È»ºó·Ön¡ÜmÒÔ¼°m+1¡Ün¡Ü2mÁ½ÖÖÇé¿öת»¯ºóÖ±½Ó´úÈëµÈ±ÈÊýÁеÄÇóºÍ¹«Ê½¼´¿É£®
½â´ð£º½â£º£¨1£©µ±n¡Ý3ʱ£¬£¬
»¯¼òµÃSn2=Sn-1Sn+1£¨n¡Ý3£©£¬ÓÖÓÉa1=1£¬a2=a-1µÃ£¬
½âµÃa3=a£¨a-1£©£¬¡àS1=1£¬S2=a£¬S3=a2£¬Ò²Âú×ãSn2=Sn-1Sn+1£¬¶øSnºãΪÕýÖµ£¬
¡àÊýÁÐ{Sn}ÊǵȱÈÊýÁУ®£¨4·Ö£©
£¨2£©SnµÄÊ×ÏîΪ1£¬¹«±ÈΪa£¬Sn=an-1£®
µ±n¡Ý2ʱ£¬an=Sn-Sn-1=£¨a-1£©an-2£¬
¡àan=
µ±n=1ʱ£¬£¬´ËʱA£¾an+1£®£¨6·Ö£©
µ±n¡Ý2ʱ£¬=£®
¡ßSnºãΪÕýÖµ¡àa£¾0ÇÒa¡Ù1£¬
Èô0£¼a£¼1£¬ÔòA-an+1£¼0£¬Èôa£¾1£¬ÔòA-an+1£¾0£®
×ÛÉϿɵ㬵±n=1ʱ£¬A£¾an+1£»
µ±n¡Ý2ʱ£¬Èô0£¼a£¼1£¬ÔòA£¼an+1£¬
Èôa£¾1£¬ÔòA£¾an+1£®£¨10·Ö£©
£¨3£©¡ßa=2¡àan=£¬µ±m+1¡Ük¡Ü2mʱ£¬bk=ak•ak+1=22k-3£®
Èôn¡Üm£¬n¡ÊN*£¬ÔòÓÉÌâÉèµÃb1=b2m£¬b2=b2m-1£¬bn=b2m-n+1
Tn=b1+b2+¡­+bn=b2m+b2m-1+¡­+b2m-n+1
=£®£¨13·Ö£©
Èôm+1¡Ün¡Ü2m£¬n¡ÊN*£¬ÔòTn=bm+bm+1+bm+2+¡­+bn=

==£®
×ÛÉϵÃTn=£®£¨16·Ö£©
µãÆÀ£º±¾ÌâµÚ¶þÎÊ¿¼²éÁËÒÑ֪ǰnÏîºÍΪSnÇóÊýÁÐ{an}µÄͨÏʽ£¬¸ù¾ÝanºÍSnµÄ¹Øϵ£ºan=Sn-Sn-1 £¨n¡Ý2£©Çó½âÊýÁеÄͨÏʽ£®ÁíÍ⣬Ðë×¢Ò⹫ʽ³ÉÁ¢µÄÇ°ÌáÊÇn¡Ý2£¬ËùÒÔÒªÑéÖ¤n=1ʱͨÏîÊÇ·ñ³ÉÁ¢£¬Èô³ÉÁ¢Ôò£ºan=Sn-Sn-1 £¨n¡Ý1£©£»Èô²»³ÉÁ¢£¬ÔòͨÏʽΪ·Ö¶Îº¯Êý£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐanÖУ¬a1=-60£¬an+1=an+3£¬ÄÇô|a1|+|a2|+¡­+|a30|µÄֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐanÖУ¬a1=
12
£¬µã£¨n£¬2an+1£¬-an£©ÔÚÖ±Ïßy=xÉÏ£¬ÆäÖÐn=l£¬2£¬3£¬¡­£®£¨1£©Áîbn=an+1-an-1£¬Ö¤Ã÷ÊýÁÐbnÊǵȱÈÊýÁУ»£¨2£©ÇóÊýÁÐanµÄÇ°nÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐanÖУ¬a1=1£¬a2=a-1£¨a¡Ù1£¬aΪʵ³£Êý£©£¬Ç°nÏîºÍSnºãΪÕýÖµ£¬ÇÒµ±n¡Ý2ʱ£¬
1
Sn
=
1
an
-
1
an+1
£®
£¨1£©ÇóÖ¤£ºÊýÁÐSnÊǵȱÈÊýÁУ»
£¨2£©ÉèanÓëan+2µÄµÈ²îÖÐÏîΪA£¬±È½ÏAÓëan+1µÄ´óС£»
£¨3£©ÉèmÊǸø¶¨µÄÕýÕûÊý£¬a=2£®ÏÖ°´ÈçÏ·½·¨¹¹ÔìÏîÊýΪ2mÓÐÇîÊýÁÐbn£ºµ±k=m+1£¬m+2£¬¡­£¬2mʱ£¬bk=ak•ak+1£»µ±k=1£¬2£¬¡­£¬mʱ£¬bk=b2m-k+1£®ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍΪTn£¨n¡Ü2m£¬n¡ÊN*£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

16¡¢ÒÑÖªÊýÁÐanÖУ¬a1=2£¬ÇÒan=n+an-1£¨n¡Ý2£©£¬ÇóÕâ¸öÊýÁеĵÚmÏîamµÄÖµ£¨m¡Ý2£©£®ÏÖ¸ø³ö´ËËã·¨Á÷³ÌͼµÄÒ»²¿·ÖÈçͼ£®
£¨¢ñ£©Ç뽫¿Õ¸ñ²¿·Ö£¨Á½¸ö£©ÌîÉÏÊʵ±µÄÄÚÈÝ£»
£¨¢ò£©Óá°For¡±Ñ­»·Óï¾äд³ö¶ÔÓ¦µÄËã·¨£»
£¨¢ó£©ÈôÊä³öS=16£¬ÔòÊäÈëµÄmµÄÖµÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010Ä꺣ÄÏÊ¡ÙÙÖÝÑóÆÖÖÐѧ¸ß¿¼Êýѧ¸´Ï°Ç¿»¯Ë«»ùÁ·Ï°£ºµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄ×ÛºÏÎÊÌ⣨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÊýÁÐanÖУ¬a1=-60£¬an+1=an+3£¬ÄÇô|a1|+|a2|+¡­+|a30|µÄֵΪ     £®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸