精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率为,且经过点. 过它的两个焦点分别作直线交椭圆于A、B两点,交椭圆于C、D两点,且

(1)求椭圆的标准方程;
(2)求四边形的面积的取值范围.

(1);(2)

解析试题分析:(1)由离心率为可知,所以,再将点P的坐标代入椭圆方程得,故所求椭圆方程为 ;
(2)垂直,可分为两种情况讨论:一是当中有一条直线的斜率不存在,则另一条直线的斜率为0;二是若的斜率都存在;
中有一条直线的斜率不存在,则另一条直线的斜率为0,此时四边形的面积为
的斜率都存在,设的斜率为,则的斜率为直线的方程为
,联立,消去整理得,
(1)

(2),注意到方程(1)的结构特征,或图形的对称性,可以用代替(2)中的

,利用换元法,再利用对构函数可以求出最值,令,综上可知,四边形面积的.
试题解析:(1)由,所以,         2分
将点P的坐标代入椭圆方程得,                            4分
故所求椭圆方程为                                   5分
(2)当中有一条直线的斜率不存在,则另一条直线的斜率为0,
此时四边形的面积为,                         7分
的斜率都存在,设的斜率为,则的斜率为直线的方程为
,联立
消去整理得,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知直线lyx,圆Ox2y2=5,椭圆E=1(a>b>0)的离心率e,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两条切线的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,点P(0,-1)是椭圆C1=1(a>b>0)的一个顶点,C1的长轴是圆C2x2y2=4的直径.l1l2是过点P且互相垂直的两条直线,其中l1交圆C2AB两点,l2交椭圆C1于另一点D.
 
(1)求椭圆C1的方程;
(2)求当△ABD的面积取最大值时,直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知椭圆C:(a>b>0)的右焦点为F(1,0),点A(2,0)在椭圆C上,斜率为1的直线与椭圆C交于不同两点M,N.
(1)求椭圆C的方程;
(2)设直线过点F(1,0),求线段的长;
(3)若直线过点(m,0),且以为直径的圆恰过原点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且.圆的方程是
(1)求双曲线的方程;
(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为,求的值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

A(x1y1),B(x2y2)是椭圆C=1(a>b>0)上两点,已知mn,若m·n=0且椭圆的离心率e,短轴长为2,O为坐标原点.
(1)求椭圆的方程;
(2)试问△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点为F2(1,0),点 在椭圆上.

(1)求椭圆方程;
(2)点在圆上,M在第一象限,过M作圆的切线交椭圆于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线,点,过的直线交抛物线两点.
(1)若,抛物线的焦点与中点的连线垂直于轴,求直线的方程;
(2)设为小于零的常数,点关于轴的对称点为,求证:直线过定点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求以椭圆的焦点为焦点,且过点的双曲线的标准方程.

查看答案和解析>>

同步练习册答案