精英家教网 > 高中数学 > 题目详情

【题目】已知在多面体中,且平面平面.

(1)设点为线段的中点,试证明平面

(2)若直线与平面所成的角为,求二面角的余弦值.

【答案】1)详见解析(2

【解析】

(1)由四边形为平行四边形.∴,再结合平面,即可证明平面

(2)由空间向量的应用,建立以为原点,所在直线为轴,过点平行的直线为轴,所在直线为轴的空间直角坐标系,再求出平面的法向量,平面的法向量,再利用向量夹角公式求解即可.

(1)证明:取的中点,连接

∵在,∴.

∴由平面平面,且交线为平面.

分别为的中点,∴,且.

,∴,且.

∴四边形为平行四边形.∴

平面.

(2)∵平面

∴以为原点,所在直线为轴,过点平行的直线为轴,所在直线为轴,建立空间直角坐标系.则.

平面,∴直线与平面所成的角为.

.∴.

可取平面的法向量

设平面的法向量

,取,则.∴

∴二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线处切线的斜率为,求此切线方程

(2)若有两个极值点,求的取值范围,并证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据《山东省全民健身实施计划(2016-2020年)》,到2020年乡镇(街道)普遍建有“两个一”工程,即一个全民健身活动中心或灯光篮球场、一个多功能运动场.某市把甲、乙、丙、丁四个多功能运动场全部免费为市民开放.

(1)在一次全民健身活动中,四个多功能运动场的使用场数如图,用分层抽样的方法从甲、乙、丙、丁四场馆的使用场数中依次抽取共25场,在中随机取两数,求这两数和的分布列和数学期望;

(2)设四个多功能运动场一个月内各场使用次数之和为,其相应维修费用为元,根据统计,得到如下表的数据:

10

15

20

25

30

35

40

2302

2708

2996

3219

3401

3555

3689

2.49

2.99

3.55

4.00

4.49

4.99

5.49

(i)用最小二乘法求之间的回归直线方程;

(ii)叫做运动场月惠值,根据(i)的结论,试估计这四个多功能运动场月惠值最大时的值.

参考数据和公式:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的离心率是,长轴是圆的直径.是椭圆的下顶点,是过点且互相垂直的两条直线,与圆相交于两点,交椭圆于另一点.

1)求椭圆的方程;

2)当的面积取最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论:

①若点为角终边上一点,则

②命题“存在”的否定是“对于任意的”;

③若函数上有零点,则

④“)”是“”的必要不充分条件.

其中正确结论的个数是()

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),等腰梯形分别是的两个三等分点,若把等腰梯形沿虚线折起,使得点和点重合,记为点 如图(2).

1)求证:平面平面

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项

(1)求证:数列为等比数列;

(2)记,若Sn<100,求最大正整数n

(3)是否存在互不相等的正整数msn,使msn成等差数列,且am-1,as-1,an-1成等比数列?如果存在,请给以证明;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,点上,且,将沿折起,使得平面平面(如图),中点.

1)求证:平面

2)求直线与平面所成的角的正弦值.

3)在线段上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某电子元件进行寿命追踪调查,所得情况如下频率分布直方图.

1)图中纵坐标处刻度不清,根据图表所提供的数据还原

2)根据图表的数据按分层抽样,抽取个元件,寿命为之间的应抽取几个;

3)从(2)中抽出的寿命落在之间的元件中任取个元件,求事件恰好有一个寿命为,一个寿命为的概率.

查看答案和解析>>

同步练习册答案