分析 (Ⅰ)由已知根据余弦定理可得$cosC=\frac{{A{C^2}+B{C^2}-A{B^2}}}{2AC•BC}$代入计算即可得解.
(Ⅱ)由0<C<π,可得sinC>0,从而可求sinC的值,利用正弦定理即可求得AD的值.
解答 (本小题共13分)
解:(Ⅰ)∵AB=12,$AC=3\sqrt{6}$,$BC=5\sqrt{6}$,
∴根据余弦定理:$cosC=\frac{{A{C^2}+B{C^2}-A{B^2}}}{2AC•BC}$=$\frac{{{{(3\sqrt{6})}^2}+{{(5\sqrt{6})}^2}-{{12}^2}}}{{2•3\sqrt{6}•5\sqrt{6}}}=\frac{1}{3}$.…(6分)
(Ⅱ)∵0<C<π,
∴sinC>0,$sinC=\sqrt{1-{{cos}^2}C}=\sqrt{1-{{(\frac{1}{3})}^2}}=\frac{{2\sqrt{2}}}{3}$.
∴根据正弦定理得:$\frac{AD}{sinC}=\frac{AC}{sin∠ADC}$,即:$AD=\frac{AC•sinC}{sin∠ADC}$=8.…(13分)
点评 本题主要考查了余弦定理,正弦定理,同角三角函数基本关系式的综合应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | n≤2014 | B. | n≤2016 | C. | n≤2015 | D. | n≤2017 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -2 | B. | 0 | C. | $\frac{2}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com