精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆上的点(不包括横轴上点)满足:与两点连线的斜率之积等于两点也在曲线上.

(1)求椭圆的方程;

(2)过椭圆的右焦点作斜率为1的直线交椭圆于两点,求

(3)求椭圆上的点到直线距离的最小值.

【答案】(1)(2)(3)

【解析】

(1)由题中与两点连线的斜率之积等于列出等量关系,化简整理即可求出结果;

(2)先求出过椭圆的右焦点且斜率为1的直线方程,代入椭圆方程,求出交点横坐标,再由弦长公式即可求出结果;

(3)设出与直线平行、且与椭圆相切的直线方程,代入椭圆方程,由判别式等于0,求出切线方程,再由两条平行线间的距离公式求解即可.

(1)因为与两点连线的斜率之积等于

所以

整理得:即为所求;

(2)由题意可得过椭圆的右焦点且斜率为1的直线为,代入椭圆方程得,化简整理得,所以,或

(3)设是椭圆的切线,代入椭圆方程得:

,即

.

直线距离为

所以当时,距离最小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,的中点,以为折痕将向上折起,变为,且平面平面.

(Ⅰ)求证:

(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知中,角的对边分别为

)若,求面积的最大值;

)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为ODEF为圆O上的点,△DBC,△ECA,△FAB分别是以BCCAAB为底边的等腰三角形。沿虚线剪开后,分别以BCCAAB为折痕折起△DBC,△ECA,△FAB,使得DEF重合,得到三棱锥。当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义满足不等式|xA|BARB0)的实数x的集合叫做AB邻域.若a+btt为正常数)的a+b邻域是一个关于原点对称的区间,则a2+b2的最小值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,是边长等于2的等边三角形,四边形是菱形,是棱上的点,.分别是的中点.

(1)求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间如下:

组号

第一组

第二组

第三组

第四组

第五组

分组

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

(1)求图中a的值;

(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;

(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2,求其中恰有1人的分数不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,均与底面垂直,且为直角梯形,分别为线段的中点,为线段上任意一点.

(1)证明:平面.

(2)若,证明:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年10月9日,教育部考试中心下发了《关于2017年普通高考考试大纲修订内容的通知》,在各科修订内容中明确提出,增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.宿州市教育部门积极回应,编辑传统文化教材,在全市范围内开设书法课,经典诵读等课程.为了了解市民对开设传统文化课的态度,教育机构随机抽取了200位市民进行了解,发现支持开展的占在抽取的男性市民120人中持支持态度的为80人.

(Ⅰ)完成列联表并判断是否有的把握认为性别与支持与否有关

(Ⅱ)为了进一步征求对开展传统文化的意见和建议,从抽取的200位市民中对不支持的按照分层抽样的方法抽取5位市民,并从抽取的5人中再随机选取2人进行座谈,求选取的2人恰好为1男1女的概率.

附: .

查看答案和解析>>

同步练习册答案