精英家教网 > 高中数学 > 题目详情
14.在△ABC中,若a2=b2+c2-$\sqrt{3}$bc,则角A的度数为(  )
A.30°B.150°C.60°D.120°

分析 利用余弦定理即可得出.

解答 解:∵a2=b2+c2-$\sqrt{3}$bc,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\sqrt{3}bc}{2bc}$=$\frac{\sqrt{3}}{2}$,A∈(0°,180°).
∴A=30°,
故选:A.

点评 本题考查了余弦定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.“点P(1,2)在曲线x2+a2y2-5=0上”是“a=1”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸.现在我国采用国际标准,规定以A0,A1,A2,B1,B2,…等标记来表示纸张的幅面规格.复印纸幅面规格只采用A系列和B系列,其中An(n∈N,n≤8)系列的幅面规格为:
①A0,A1,A2,…,A8所有规格的纸张的幅宽(以x表示)和长度(以y表示)的比例关系都为$x:y=1:\sqrt{2}$;
②将A0纸张沿长度方向对开成两等分,便成为A1规格,A1纸张沿长度方向对开成两等分,便成为A2规格,…,如此对开至A8规格.现有A0,A1,A2,…,A8纸各一张.若A4纸的宽度为2dm,则A0纸的面积为64$\sqrt{2}$dm2;这9张纸的面积之和等于$\frac{511\sqrt{2}}{4}$dm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,内角A、B、C所对的边长分别是a、b、c,且边c的长为2,角C为$\frac{π}{3}$,△ABC的面积为$\sqrt{3}$,则a=(  )
A.1B.$\sqrt{3}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设复数z=$\frac{1}{1-i}$+i(i为虚数单位),则|z|=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{10}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设不等式x2-x≤0的解集为M,则M为(  )
A.[0,1)B.(0,1)C.[0,1]D.(-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(x-1)ex
(1)求f(x)的单调区间;
(2)求f(x)在区间[0,1]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),两点F1(-1,0)、F2(1,0)为椭圆C的焦点,点P在椭圆C上,且|PF1|+|PF2|=2|F1F2|.
(1)求椭圆C的标准方程;
(2)如图已知椭圆C的内接平行四边形ABCD的一组对边分别过椭圆的焦点F1、F2,求该平行四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.复数z=$\frac{a-i}{1+i}$(a∈R,i是虚数单位)在复平面上对应的点不可能位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案