精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面的中点

1)证明:平面

2)若是边长为2的等边三角形,求二面角的余弦值

【答案】1)证明见解析 2

【解析】

1)取中点,得到,从而平面,可得到四边形是平行四边形,得到,从而平面,得到平面平面,从而证明平面;(2)建立空间直角坐标系,得到平面的法向量和平面的法向量,利用向量夹角公式,得到二面角的余弦值.

1)如图取中点,连接

的中点,

平面平面

平面

四边形是平行四边形,

平面平面

平面

又因为平面平面

平面平面

平面

平面

2)根据题意,建立空间直角坐标系

为等边三角形,,不妨设

设平面的法向量

,得

,得

平面PAB

平面的法向量

二面角A-PB-M的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】半圆的直径的两端点为,点在半圆及直径上运动,若将点的纵坐标伸长到原来的2倍(横坐标不变)得到点,记点的轨迹为曲线.

(1)求曲线的方程;

(2)若称封闭曲线上任意两点距离的最大值为该曲线的直径,求曲线直径”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,沿河有AB两城镇,它们相距千米.以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放.两城镇可以单独建污水处理厂,或者联合建污水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送).依据经验公式,建厂的费用为(万元),表示污水流量;铺设管道的费用(包括管道费)(万元),表示输送污水管道的长度(千米).已知城镇A和城镇B的污水流量分别为两城镇连接污水处理厂的管道总长为千米.假定:经管道输送的污水流量不发生改变,污水经处理后直接排入河中.请解答下列问题(结果精确到):

1)若在城镇A和城镇B单独建厂,共需多少总费用?

2)考虑联合建厂可能节约总投资,设城镇A到拟建厂的距离为千米,求联合建厂的总费用的函数关系式,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为正数,且,对于任意的,均有.

1)求证:是等比数列,并求出的通项公式;

2)若数列中去掉的项后,余下的项组成数列,求

3)设,数列的前项和为,是否存在正整数,使得成等比数列,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若时,讨论的单调性;

2)设,若有两个零点,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为为参数),以平面直角坐标系的原点O为极点,x轴正半轴为极轴建立极坐标系.

1)求曲线C的极坐标方程;

2)过点,倾斜角为的直线l与曲线C相交于MN两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中e为自然对数的底数.

1)讨论函数的单调性;

2)用表示中较大者,记函数.若函数上恰有2个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月AB两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中AB两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

交付金额(元)

支付方式

0,1000]

1000,2000]

大于2000

仅使用A

18

9

3

仅使用B

10

14

1

(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月AB两种支付方式都使用的概率;

(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;

(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.

查看答案和解析>>

同步练习册答案