精英家教网 > 高中数学 > 题目详情
若数列1,2cosθ,22cos2θ,23cos3θ,…,前100项之和为0,则θ的值为
 
考点:数列的求和
专题:等差数列与等比数列,三角函数的求值
分析:直接由等比数列的前n项和公式列式得到
1-(2cosθ)100=0
1-2cosθ≠0
,求出cosθ=-
1
2
,则θ的值可求.
解答: 解:∵1,2cosθ,22cos2θ,23cos3θ,…为等比数列,首项为1,公比为2cosθ,
由等比数列的前n项和公式可得,
S100=1+2cosθ+(2cosθ)2+…+(2cosθ)99
=
1-(2cosθ)100
1-2cosθ
=0,
由题意可得,
1-(2cosθ)100=0
1-2cosθ≠0

∴2cosθ=-1 即cosθ=-
1
2

∴θ=2kπ±
3
,k∈Z.
故答案为:2kπ±
3
(k∈Z).
点评:本题考查了等比数列的前n项和公式,考查了三角函数的求值,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b,l表示三条不同的直线,α,β,γ表示三个不同的平面,有下列四个命题:
①若α∩β=a,β∩γ=b,且a∥b,则α∥γ;、
②若a,b相交,且都在α,β外,a∥α,a∥β,b∥α,b∥β,则α∥β;
③若α⊥β,α∩β=a,b?β,a⊥b,则b⊥α;
④若a?α,b?α,l⊥a,l⊥b,则l⊥α.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若二项展开式(1-x)9=a0+a1x+a2x2+…+a9x9,其中a0,a1,a2,…,a9是展开式系数,则||a0|+|a1|+|a2|+…+|a9|的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2;从五张卡片中,任取两张,这两张卡片颜色不同且标号之和小于4的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数
2i-3
1+i
=a-bi,则a+b=(  )
A、1B、3C、-1D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2
x
2
-sin2
x
2
-sinx.
(1)求f(x)的最小正周期及单调增区间;
(2)当x0∈(0,
π
4
)且f(x0)=
4
2
5
时,求f(x0+
π
4
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex(ax+b)+x2+2x,曲线y=f(x)经过点P(0,1),且在点P处的切线为l:y=4x+1.
(I)求a,b的值;
(Ⅱ)若存在实数k,使得x∈[-2,-1]时f(x)≥x2+2(k+1)x+k恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b均为正实数,若ab(a+b)=1,则a2+ab+4b的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角A、B、C所对的边分别为a,b,c,且满足bsinBsinC+ccos2B=
7
3
b,
(1)求
c-b
c+b
的值;
(2)若tanA=
5
3
11
,求角C的值.

查看答案和解析>>

同步练习册答案