精英家教网 > 高中数学 > 题目详情

 已知椭圆的一条准线为,且与抛物线有相同的焦点.  

(Ⅰ)求椭圆的方程;

(Ⅱ)设点是该椭圆的左准线与轴的交点,是否存在过点的直线与椭圆相交于两点,且线段的中点恰好落到由该椭圆的两个焦点、两个短轴顶点所围成的四边形区域内(包括边界)?若存在,求出直线的斜率的取值范围;若不存在,请说明理由.  

 

 

 

 

 

 

【答案】

 解:(Ⅰ)依题意,易知椭圆的方程为.     .              …………4分

(Ⅱ)椭圆的左准线方程为,点P的坐标

假设存在直线符合题意,其斜率显然存在,设直线的方程为.            ………5分

设点的坐标分别为线段的中点为,  

代入椭圆,得.……① ………6分

解得.……②             …………7分

,于是,  

因为,所以点不可能在轴的右边,           …………9分

又直线,方程分别为,则必有  

 即亦即.   …………11分

解得,此时②也成立.                         …………12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的一条准线方程是其左、右顶点分别是A、B;双曲线的一条渐近线方程为3x-5y=0.

(Ⅰ)求椭圆C1的方程及双曲线C2的离心率;

(Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若. 求证:

查看答案和解析>>

科目:高中数学 来源:2010年四川省成都市石室中学高考数学模拟试卷(理科)(解析版) 题型:解答题

已知椭圆的一条准线为x=-4,且与抛物线y2=8x有相同的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点P是该椭圆的左准线与x轴的交点,过点P的直线l与椭圆相交于M、N两点,且线段MN的中点恰好落在由该椭圆的两个焦点、两个短轴顶点所围成的四边形区域内(包括边界),求此时直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年四川省成都市石室中学高考数学三模试卷(理科)(解析版) 题型:解答题

已知椭圆的一条准线为x=-4,且与抛物线y2=8x有相同的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点P是该椭圆的左准线与x轴的交点,过点P的直线l与椭圆相交于M、N两点,且线段MN的中点恰好落在由该椭圆的两个焦点、两个短轴顶点所围成的四边形区域内(包括边界),求此时直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年四川省成都市石室中学高考数学三模试卷(文科)(解析版) 题型:解答题

已知椭圆的一条准线为x=-4,且与抛物线y2=8x有相同的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点P是该椭圆的左准线与x轴的交点,过点P的直线l与椭圆相交于M、N两点,且线段MN的中点恰好落在由该椭圆的两个焦点、两个短轴顶点所围成的四边形区域内(包括边界),求此时直线l斜率的取值范围.

查看答案和解析>>

同步练习册答案