精英家教网 > 高中数学 > 题目详情
15.定义在(-8,8)上的函数f(x)既为减函数,又为奇函数,解关于a的不等式f(7-a)+f(5-a)<0.

分析 根据函数的奇偶性可将原不等式化为f(7-a)<f(a-5),再结合函数的单调性和定义域,可得-8<a-5<7-a<8,解得答案.

解答 解:∵f(x)的定义坸为(-8,8),且函数f(x)既为减函数,又为奇函数,
∴不等式f(7-a)+f(5-a)<0,
可化为:f(7-a)<-f(5-a)=f(a-5),
即-8<a-5<7-a<8,
解得:a∈(-1,6)

点评 本题考查的知识点是函数奇偶性和单调性的综合应用,是函数图象和性质的简单综合.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2sin(2x+$\frac{π}{3}$)+1.
(1)求f(x)的周期;
(2)求f(x)的单调递增区间;
(3)若x∈[0,$\frac{π}{3}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知一条曲线C在y轴右侧,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(1)求曲线C的方程;
(2)已知点P是曲线C上一个动点,点Q是直线x+2y+5=0上一个动点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{e}^{x}-2a(x+1),x≥0\\ x+acosx,x<0\end{array}\right.(a∈R)$,若其在定义域内是单调函数,则实数a的取值范围是$[-1,\frac{1}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,∠DAB=∠ABC=90°,PA⊥平面ABCD,点E是PA的中点,AB=BC=1,AD=2.求证:
(1)平面PCD⊥平面PAC;
(2)BE∥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x+$\frac{1}{{a}^{2}}$|+|-x+a|
(Ⅰ)当a=1时,求不等式f(x)>4的解集;
(Ⅱ)若a>0,求证:f(x)≥$\frac{3\root{3}{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知正四棱锥S-ABCD的底面边长为a,侧棱长为2a,点P,Q分别在BD和SC上,并且BP:PD=1:3,PQ∥平面SAD,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,已知曲柄连杆机构中的OA=0.45m,AP=2.25m,当α=0°时,P和Q重合,设P、Q距离为x,求在下列条件下x的值(精确到0.01m).
(1)α=30°;(2)α=135°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=|1-$\frac{1}{x}$|(x>0).
(1)求f(x)的单调区间;
(2)是否存在正实数a,b(a<b),使函数f(x)的定义域为[a,b]时值域为[$\frac{a}{6}$,$\frac{b}{6}$]?若存在,求a,b的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案