精英家教网 > 高中数学 > 题目详情
10.要得到函数y=3sin(2x+$\frac{π}{3}$)的图象,只需要将函数y=3cos2x的图象(  )
A.向右平行移动$\frac{π}{12}$个单位B.向左平行移动$\frac{π}{12}$个单位
C.向右平行移动$\frac{π}{6}$个单位D.向左平行移动$\frac{π}{6}$个单位

分析 由条件利用诱导公式,函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:函数y=3sin(2x+$\frac{π}{3}$)=3cos[$\frac{π}{2}$-(2x+$\frac{π}{3}$)]=3cos($\frac{π}{6}$-2x)=3cos(2x-$\frac{π}{6}$)=3cos2(x-$\frac{π}{12}$),
故把函数y=3cos2x的图象向右平行移动$\frac{π}{12}$个单位,可得函数y=3sin(2x+$\frac{π}{3}$)的图象,
故选:A.

点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题..

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知x>0,y>0,且$\frac{1}{x}$+$\frac{2}{y}$=1,则x+4y的最小值是9+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.记不等式组$\left\{\begin{array}{l}{x+y-4≤0}\\{3x-2y+3≥0}\\{x-4y+1≤0}\end{array}\right.$,所表示的区域为D.
(1)求区域D的面积.
(2)设P(x,y)为区域内一动点,求z=$\frac{y-2}{x+4}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$(a>b>0),直线y=x+$\sqrt{6}$与以原点为圆心,以椭圆C的短半轴为半径的圆相切,F1,F2为其左右焦点,P为椭圆C上的任意一点,△F1PF2的重心为G,内心为I,且IG∥F1F2,则椭圆C的标准方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数f(x)对于x>0有意义,且当x>1时,f(x)>0,f(2)=1,满足f(xy)=f(x)+f(y)
(1)证明:f(1)=0.
(2)证明:f(x)在(0,+∞)上是单调递增函数.
(3)若f(x)+f(x-2)≥2成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知轴截面是等腰直角三角形的圆锥,若其母线长为2,则此圆锥侧面积为2$\sqrt{2}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,AB=2$\sqrt{3}$,BC=3,∠ABC=30°,则AC=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{21-6\sqrt{3}}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“tana=2”是“tan2a=-$\frac{4}{3}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁RB)=R,则求实数a的取值范围.

查看答案和解析>>

同步练习册答案