精英家教网 > 高中数学 > 题目详情

【题目】下列3个命题:
(1)函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
(2)若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0且a>0;
(3)y=x2﹣2|x|﹣3的递增区间为[1,+∞).
其中正确命题的个数是( )
A.0
B.1
C.2
D.3

【答案】A
【解析】解:(1)函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数,不正确,举反例f(x)= ;(2)若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0且a>0或a=b=0,因此不正确;(3)y=x2﹣2|x|﹣3= ,其递增区间为[﹣1,0]或[1,+∞),因此不正确.
其中正确命题的个数是0.
故选:A.
【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:

I)已知该校有名学生,试估计全校学生中,每天学习不足小时的人数.

II)若从学习时间不少于小时的学生中选取人,设选到的男生人数为,求随机变量的分布列.

III)试比较男生学习时间的方差与女生学习时间方差的大小.(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 是椭圆上的两点,椭圆的离心率为,短轴长为2,已知向量 ,且 为坐标原点.

(1)若直线过椭圆的焦点,( 为半焦距),求直线的斜率的值;

(2)试问: 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心C在x轴上,且圆C与直线 相切于点
(1)求n的值及圆C的方程;
(2)若圆M: 与圆C相切,求直线 截圆M所得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0} (Ⅰ)若A∩B=,A∪B=R,求实数a的值;
(Ⅱ)若p是q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对定义域分别为D1 , D2的函数y=f(x),y=g(x),规定:函数h(x)= ,f(x)=x﹣2(x≥1),g(x)=﹣2x+3(x≤2),则h(x)的单调减区间是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(0,+∞),f(2)=1,f(xy)=f(x)+f(y)且当x>1时,f(x)>0.
(1)判断函数f(x)在其定义域(0,+∞)上的单调性并证明;
(2)解不等式f(x)+f(x﹣2)≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)判断f(x)在(0,+∞)的单调性;
(2)若x>0,证明:(ex﹣1)ln(x+1)>x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|f(x)=lg(x﹣1)+ },集合B={y|y=2x+a,x≤0}.
(1)若a= ,求A∪B;
(2)若A∩B=,求实数a的取值范围.

查看答案和解析>>

同步练习册答案