精英家教网 > 高中数学 > 题目详情
9.过点(-2,5),且与圆x2+y2+2x-2y+1=0相切的直线方程为:x=-2或15x+8y-10=0.

分析 将圆的方程化为标准方程,找出圆心坐标与半径r,分两种考虑:当直线l斜率不存在时,直线l方程为x=-3满足题意;当直线l斜率存在时,设为k,由P坐标与k表示出直线l方程,由直线l与圆相切,得到圆心到直线l的距离d等于圆的半径r,利用点到直线的距离公式列出关于k的方程,求出方程的解得到k的值,确定出此时直线l的方程,综上,得到所求满足题意直线l的方程.

解答 解:将圆的方程化为标准方程得:(x+1)2+(y-1)2=1,
∴圆心坐标为(-1,1),半径r=1,
若直线l斜率不存在,此时直线l为x=-2与圆相切;
若直线l斜率存在,设为k,得到直线l方程为y-5=k(x+2),即kx-y+2k+5=0,
∵直线l与圆相切,∴圆心到直线l的距离d=r,即$\frac{|-k-1+2k+5|}{\sqrt{{k}^{2}+1}}$=1,
解得:k=-$\frac{15}{8}$,
此时直线l的方程为15x+8y-10=0,
综上,直线l的方程为x=-2或15x+8y-10=0.
故答案为:x=-2或15x+8y-10=0.

点评 此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,直线的一般式方程,利用了分类讨论的思想,当直线与圆相切时,圆心到切线的距离等于圆的半径,熟练掌握此性质是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.给出下列四个结论:
(1)若x,y∈R,则“x=y”是“xy≥($\frac{x+y}{2}$)2”的充要条件
(2)设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的线性回归方程为y=0.85x-85.71,则若该大学某女生身高增加1cm,则其体重约增加0.85kg;
(3)为调查中学生近视情况,测得某校男生150名中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,应该用独立性检验最有说服力;
(4)已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79,则P(ξ≤-2)=0.21
其中正确结论的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{m}$=($\sqrt{3}$sin2x+2,cosx),$\overrightarrow{n}$=(1,2cosx),设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)求f(x)的最小正周期与[0,2π]上函数的单调递减区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,若A=$\frac{π}{3}$,b=1,△ABC的面积为$\frac{\sqrt{3}}{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)$\underset{lim}{x→0}$$\frac{\sqrt{1+xsinx}-1}{{e}^{3x}-1}$
(2)$\underset{lim}{x→0}$$\frac{tanx-sinx}{x(arcsinx)^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\underset{lim}{x→0}$$\frac{Atanx+B(1-cosx)}{Cln(1-2x)+D(1-{e}^{-{x}^{2}})}$=1(其中A,B,C,D是非0常数)则它们之间的关系为.
A.B=-2DB.B=2DC.A=2CD.A=-2C

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.(1+x)6(1-x)6展开式中x6的系数为-20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若A={1,3,5,7},B={2,4,6},C={(x,y)|x∈A,y∈B},列出C中的所有元素.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}满足:a6=13,a2+a4=14,{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令bn=$\frac{4}{({a}_{n}-1)({a}_{n+1}-1)}$,(n∈N*),求数列{bn}的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.平面上到定点A(l,2)距离为1且到定点B(5,5)距离为d的直线共有4条,则d的取值范是(  )
A.(0,4)B.(2,4)C.(2,6)D.(4,6)

查看答案和解析>>

同步练习册答案