精英家教网 > 高中数学 > 题目详情
1.设F为抛物线y2=12x的焦点(O为坐标原点),M(x,y)为抛物线上一点,若|MF|=5,则点M的横坐标x的值是2,三角形OMF的面积是3$\sqrt{6}$.

分析 利用抛物线的性质,推出M的横坐标;然后求解三角形的面积.

解答 解:F为抛物线y2=12x的焦点(3,0)(O为坐标原点),M(x,y)为抛物线上一点,
|MF|=5,设M的横坐标为x,可得|MF|=x-(-3),可得x=2;
纵坐标为:y=$±\sqrt{12×2}$=$±2\sqrt{6}$.
三角形OMF的面积是:$\frac{1}{2}×3×2\sqrt{6}$=3$\sqrt{6}$.
故答案为:$2,3\sqrt{6}$;

点评 本题考查抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知A是射线x+y=0(x≤0)上的动点,B是x轴正半轴的动点,若直线AB与圆x2+y2=1相切,则|AB|的最小值是$2+2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知抛物线y2=2px(p>0),F为其焦点,l为其准线,过F作一条直线交抛物线于A,B两点,A′,B′分别为A,B在l上的射线,M为A′B′的中点,给出下列命题:
①A′F⊥B′F;
②AM⊥BM;
③A′F∥BM;
④A′F与AM的交点在y轴上;
⑤AB′与A′B交于原点.
其中真命题的是①②③④⑤.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆C:(x-3)2+(y-4)2=4.
(Ⅰ) 若直线l过点A(2,3)且被圆C截得的弦长为2$\sqrt{3}$,求直线l的方程;
(Ⅱ) 若直线l过点B(1,0)与圆C相交于P,Q两点,求△CPQ的面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线l:mx-y-3=0(m∈R),则点P(2,1)到直线l的最大距离是(  )
A.2$\sqrt{3}$B.2$\sqrt{5}$C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F1(-1,0),P为椭圆上的顶点,且∠PF1O=45°(O为坐标原点).
(1)求a,b的值;
(2)已知直线l1:y=kx+m1与椭圆交于A,B两点,直线l2:y=kx+m2(m1≠m2)与椭圆交于C,D两点,且|AB|=|CD|.
①求m1+m2的值;
②求四边形ABCD的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则ω,φ的值分别是(  )
A.2,-$\frac{π}{6}$B.2,-$\frac{π}{3}$C.4,-$\frac{π}{3}$D.4,-$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知向量$\overrightarrow a=(x,y)$(x,y∈R),$\overrightarrow b=(1,2)$,若x2+y2=1,则$|\overrightarrow a-\overrightarrow b|$的最大值为$\sqrt{5}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)是定义在R上的函数,且满足f(x-1)=f(x+1)=f(1-x),当x∈[2,3]时,f(x)=-2(x-3)2+4,求当x∈[1,2]时,f(x)的表达式.

查看答案和解析>>

同步练习册答案